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ABSTRACT

Protein-protein interactions play a central role in the formation of protein complexes and

the biological pathways that orchestrate virtually all cellular processes. Reliable identification

of the specific amino acid residues that form the interface of a protein with one or more other

proteins is critical to understanding the structural and physico-chemical basis of protein inter-

actions and their role in key cellular processes, predicting protein complexes, validating protein

interactions predicted by high throughput methods, and identifying and prioritizing drug tar-

gets in computational drug design. Because of the difficulty and the high cost of experimental

characterization of interface residues, there is an urgent need for computational methods for

reliable predicting protein-protein interface residues from the sequence, and when available, the

structure of a query protein, and when known, its putative interacting partner.

Against this background, this thesis develops improved methods for predicting protein-

protein interface residues and protein-protein interfaces from the three dimensional structure of

an unbound query protein without considering information of its binding protein partner. To-

wards this end, we develop (i) ProtInDb (http://protindb.cs.iastate.edu), a database of protein-

protein interface residues to facilitate (a) the generation of datasets of protein-protein interface

residues that can be used to perform analysis of interaction sites and to train and evaluate

predictors of interface residues, and (b) the visualization of interaction sites between proteins

in both the amino acid sequences and the 3D protein structures, among other applications;

(ii) PoInterS (http://pointers.cs.iastate.edu/), a method for predicting protein-protein interac-

tion sites formed by spatially contiguous clusters of interface residues based on the predictions

generated by a protein interface residue predictor. PoInterS divides a protein surface into a

series of patches composed of several surface residues, and uses the outputs of the interface

residue predictors to rank and select a small set of patches that are the most likely to consti-

tute the interaction sites; and (iii) PrISE (http://prise.cs.iastate.edu/), a method for predicting
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protein-protein interface residues based on the similarity of the structural element formed by

the query residue and its neighboring residues and the structural elements extracted from the

interface and non-interface regions of proteins that are members of experimentally determined

protein complexes. A structural element captures the atomic composition and solvent accessi-

bility of a central residue and its closest neighbors in the protein structure. PrISE decomposes

a query protein into a set of structural elements and searches for similar elements in a large set

of proteins that belong to one or more experimentally determined complexes. The structural

elements that are most similar to each structural element extracted from the query protein are

then used to infer whether its central residue is or is not an interface residue. The results of our

experiments using a variety of benchmark datasets show that PoInterS and PrISE generally

outperform the state-of-the-art structure-based methods for predicting interaction patches and

interface residues, respectively.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

1.1.1 Protein-protein interaction sites and interface residues

Proteins are fundamental to virtually every process in the cell, including catalysis in bio-

chemical reactions, conformations of the structure of cells and tissues, and control of cellular

processes such as DNA replication and signal transduction. To perform their functions, pro-

teins interact with other molecules such DNA, RNA, or other proteins or ligands. The binding

sites that define the interaction between proteins are known as interaction sites, and they are

composed of a set of amino acid residues, known as interface residues, that form a chemical

bond with a component of another molecule. The identification of interaction sites or interface

residues can lead to advances in problems such as prediction and validation of protein-protein

interactions (7; 170; 13; 165; 150; 208), protein docking (48; 71; 135; 139; 173), identification of

hot-spot residues (6; 114; 184), understanding of disease pathways (102; 100; 164), and devel-

opment of new drugs (189; 197; 5; 215).

Interaction sites and interface residues can be experimentally identified using different meth-

ods. Some of the most commonly used methods are:

• X-ray crystallography (17). This method allows scientists to estimate the position of the

atoms of a protein from the analysis of the diffracted angles and intensities of X-ray beams

applied to a crystallized protein. As a consequence, X-ray crystallography is unsuitable

for determining the structures of proteins difficult to crystallize (e.g. several proteins

in the cellular membranes, or proteins in some transient complexes) (148). Furthermore,

some conformations derived from protein crystals are not biologically relevant (216), which

introduces false positives in the set of determined interface residues. Despite these limita-
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tions, X-ray crystallography methods have been used to determine the structure of more

than 87%1 of the proteins deposited in the Protein Data Bank (PDB) (12).

• Nuclear magnetic resonance (NMR) spectroscopy (55; 216). Determination of molecular

structures using NMR spectroscopy is based on the absorption of different radio frequen-

cies (i.e. resonance) by molecules exposed to a strong magnetic field. This method can

be used to determine the structure of proteins in a solution. The solution is analyzed

in a NMR spectrometer that measures the nuclear magnetic resonance of protons and

some carbon and nitrogen atoms to identify atoms in different amino acids in the protein

sequence. Then, the resonance of different atoms is perturbed to infer the internuclear

distances between close atoms, which allow modeling the position of the atoms in the

protein. Unlike X-ray crystallography, NMR spectroscopy can produce different models

of a protein, which provides some insights into its dynamics. NMR spectroscopy methods

are generally used to determine the structure of proteins with molecular weight lower than

50 kDa (152) and low to moderate flexibility (66). Around 11% of the proteins structures

deposited in the PDB have been determined using NMR as of February 2012.

• Site-specific mutagenesis (196). Using this technique it is possible to identify a subset of

interface residues responsible for the stability of protein complexes. This is performed by

introducing mutations to specific base pairs in the DNA and evaluating the impact of the

mutations on the stability of known protein complexes that contain the protein derived

from the mutated DNA. The residues responsible for maintaining the stability in protein

complexes are called hot-spot residues.

• Chemical cross-linking and mass spectrometry (160; 8). Using this method, a purified

and tagged protein complex is subject to a cross-linking reaction to form cross-links (i.e.

covalent bonds that link two proteins in a complex), that can be identified using mass

spectrometry. Chemical-cross linking and mass spectrometry can be used to generate low

resolution protein structures (174) and to identify interaction sites in transient complexes

(128).

1Information extracted from http://www.pdb.org/pdb/statistics/holdings.do on February, 2012.
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Given the limitations and the expensive and labor-intensive nature of these methods (53),

there is an urgent need for developing computational tools useful for predicting protein-protein

interaction sites.

1.1.2 Prediction of interaction sites using machine learning

Machine learning techniques provide cost-effective approaches for performing computational

prediction of protein-protein interface residues and interaction sites - see reviews in (91; 213;

9; 43; 11; 53; 183; 56). A machine learning-based predictor of interaction sites is a function

y = h(x) that predicts whether a protein site x is or is not an interaction site. The range of the

predicted value y determines whether the predictor h is a regression function (i.e. y ∈ R) or a

classification function (i.e. y ∈ {true, false}). A regression function generates a score y that is

used to predict whether x is or is not an interaction site whereas a classifier directly predicts

whether x is or is not an interaction site. Different machine learning algorithms have been used

to build predictors of protein-protein interaction sites. Some examples include artificial neural

networks (214; 54; 145; 31; 153; 155; 11), support vector machines (204; 205; 206; 19; 22; 35; 190;

192; 200; 47; 155; 191; 70; 116; 44; 121; 124; 123; 210), hidden Markov support vector machines

(122), Bayesian networks (205; 21), Naive Bayes (193; 133), conditional random fields (115; 74),

random forest (20; 32; 172; 159), clusters (69; 171; 212; 131; 202), and ensemble methods that

combine the results of different predictors (168; 138; 158; 191; 44; 41). More details of some of

these methods are given in the following chapters.

The construction of a predictor generally involves a process in which the function h is built

from a training dataset, and evaluated using a different testing dataset. In the case of protein-

protein interaction sites predictors, these datasets are generally extracted from the Protein

Data Bank (PDB) (12), that stores macromolecular structural data that is free and open to the

community. Using the three-dimensional position of the atoms in a protein complex deposited

in PDB, a user can compute the set of amino acid residues in the interaction sites between

every pair of proteins in the complex. Therefore, a dataset of protein-protein interface residues

can be defined as a set of pairs (x, y), where x represents a protein site and y represents the

interface/non-interface label associated with the site x.
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A protein site is generally described using features that are useful to discriminate between

interaction and non-interaction sites (91; 180; 93; 181; 29; 40; 201; 43; 207; 11; 53; 183; 50; 130).

Such features can be derived from the protein sequence (e.g. propensity of the residues to be

part of interaction sites, hydrophobicity, electrical charge), the protein structure (e.g. solvent

accessible surface area, B-factor, secondary structure, protrusion), or from data derived from

conservation analysis (e.g. profiles generated from multiple sequence alignments). Given that no

single feature has been found to be sufficient to perform prediction of protein-protein interaction

sites (53), it is common to represent a site using a combination of different features.

Methods for predicting protein-protein interaction sites can be divided in those that rep-

resent information using the protein sequence and those that represent information using the

protein structure (56). Methods based on protein sequences (145; 204; 205; 206; 190; 200; 77;

81; 70; 32; 44; 172; 133; 202) generally represent each amino acid using features derived from

it and its neighbors in the sequence. Therefore, an amino acid ai may be represented as a

tuple (ai−k, ..., ai−1,ai, ai+1, ..., ai+k), where ai−j represents a feature associated with the j-th

residue before residue ai in the sequence. Methods based on protein structures (54; 31; 24;

35; 115; 155; 158; 191; 116; 121; 122; 124; 147; 172; 80; 123; 210; 211) represent each amino

acid using information of its closest residues in the structure. For example, amino acid ai can

be represented as the tuple (ai, n1, n2, ..., nl) where nj represents the closest j-th residue to

ai according to metrics such as the Euclidean distance between the closest atoms of residues

ai and aj. The number of neighbors to use in the sequence or structure representations are

commonly determined using a grid search approach. The main advantage of sequence-based

prediction methods is that the number of known protein sequences is much larger than the

number of known protein structures, which potentially allows sequence-based methods to pre-

dict interaction sites for a larger number of proteins than structure-based methods. The main

advantage of structure-based prediction methods is that they can use more information (derived

from the protein structures) than sequence-based methods, which make them very attractive

for predicting interaction sites.

Predictors of interaction sites can also be divided into predictors of protein-protein interface

residues (214; 54; 57; 31; 24; 35; 113; 110; 115; 155; 158; 191; 79; 116; 165; 11; 49; 122; 121;
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124; 172; 107; 123), and predictors of protein-protein interaction patches (94; 22; 119; 132; 90).

Predictors of interface residues label each amino acid residue in the protein as belonging to or

not belonging to the interaction site. Predictors of interaction patches divide the surface of the

protein into patches, generally composed of a central residue and its neighbors in the structure,

and select a small set of patches with the highest probability of belonging to the interaction

site, allowing researchers to focus on specific sites of a protein.

Of particular interest are recent methods based on similarity between proteins or protein

regions, given that the likelihood of success of such methods increases as the number of deter-

mined protein structures growth. These methods are motivated by observations suggesting that

interaction sites tend to be conserved among proteins with similar structures (35; 182; 39; 69).

A limitation of the methods based on proteins with similar structure or sequence to that of a

query protein (212; 202; 211) is that they can generate predictions only when similar proteins

are found. Methods based on the similarity between protein regions (106; 26; 27; 107) overcome

this limitation, but they are computationally intensive and have low predictive performance in

comparison with methods based on similarity between proteins.

1.1.3 Challenges for predicting protein-protein interaction sites

The creation and evaluation of methods for predicting protein-protein interface residues

involve different challenges. Most of these challenges are due to the nature of the data, the

complexity of the processes required to build and evaluate reliable predictive models, and the

difficulty to objectively compare different predictors. Some of these challenges are presented in

this subsection.

The nature of the data required to perform prediction of protein-protein interaction sites

impose some challenges for constructing reliable predictors. An initial problem is that some

types of protein structures are underrepresented in the PDB, which can result in biased pre-

dictions. For example, proteins in cellular membranes represent around 30% of the proteome

but account for about 1% of the structures deposited in the PDB (46; 142). Similarly, some

protein interactions are underrepresented in the PDB, mainly due to the difficulty of experimen-

tally determining some complexes representing such interactions. Some examples include the
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interactions in transient complexes (141; 177; 151; 149), in promiscuous proteins (that in some

cases can bind to hundreds of partners) (63; 84; 185), and in disordered proteins (61; 129). An-

other limitation is that protein structures derived by some experimental techniques (e.g. X-ray

crystallography) do not represent the dynamics associated with the interaction between their

components but the most likely or stable complex structure. As a consequence of these prob-

lems, it is impossible to indicate with certainty which residues do not belong to any interaction

site in a protein. Similarly, false positives can be introduced to the set of interface residues due

to problems such as the formation of fake interaction sites in crystallography experiments and

in the prediction processes used to generate some biological assemblies in the PDB.

There are diverse challenges involved in the processes used to train and test predictive

models. A usual problem is overfitting, in which the errors produced after evaluating a predictive

model on different datasets are significantly different. Some of the most common causes of

overfitting are the creation of complex models that include large numbers of variables, and the

construction of models using datasets that are not representative of the actual population of

the problem. Techniques to detect or minimize overfitting include the generation of training

datasets that attempt to represent the distribution of the data, the evaluation of the predictive

error using cross-validation experiments (e.g. 5-fold cross validation) and testing datasets that

are independent from the training datasets, and the use of regularization terms that penalize

complex models that use a large number of parameters. The performance of a predictor can also

be dramatically affected by the selection, representation and combination of the attributes used

to describe a protein site. Depending on the number of attributes and attribute representations,

sometimes it is essential to perform a large number of experiments to maximize the predictive

performance without causing overfitting. Another common problem is the use of inadequate

metrics to evaluate the performance of a predictor. Given that the number of interface residues

is generally smaller than the number of non-interface residues, measures such as the accuracy,

that account for the number of correctly predicted instances, can indicate very good performance

for very bad predictions (e.g. high values of accuracy can be produced if all the residues are

predicted as non-interacting residues).

The comparison of different predictors of protein-protein interface residues can be a difficult
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task, mainly because of the differences in the experimental approaches used to build each

predictor (53). The creation and evaluation of prediction methods involve problems such as

the selection of the definitions of interface and surface residues, the type of complexes used to

train the predictors (e.g. homo-obligomer, hetero-obligomer, homo-transient, or hetero-transient

complexes), the evaluation methodology (e.g. cross-validation experiments, testing with an

independent dataset), and the performance measures (e.g. correlation coefficient, precision-

recall curves, area under the receiver operating characteristic curve). An ideal comparison

between different predictors would require to train and test them using the same set of proteins

and experimental conditions. In most in the cases this would require a copy of the source code

used to build the predictor, or to write a version of the program following the specifications given

in the literature. However, these approaches are difficult to follow in practice due to factors such

as the lack of the details needed to successfully replicate the predictors from the description

given in the literature, the lack of response of some of the authors of the prediction methods

(e.g. students that already completed their studies), or the dependency of some predictors on

tools that have been deprecated and are no longer available. An alternative to assess different

methods is to utilize their web servers to generate predictions for proteins in a given dataset

and to evaluate these predictions using the same performance metrics (213; 43; 11). However,

this approach can lead to unfair comparisons because it does not consider factors such as the

use of different datasets to train different predictors or the selection of different definitions of

interface residues.

All these problems make the creation and evaluation of prediction methods a non-trivial,

time-consuming, and computationally-intensive task.

1.2 Research aims

In light of (i) the costs and limitations of the experimental methods used to determine protein

interaction sites, (ii) the rich set of features available for structure-based prediction methods,

and (iii) the limitations in predictive performance of the existing predictors of protein-protein

interface residues and protein-protein interaction patches; the major aim of this dissertation is

the creation of tools and methods for improving structure-based prediction of protein-protein
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interaction sites defined in terms of interface residues and interface patches. To achieve this

aim, we defined three sub-goals:

1. The creation of a database of protein-protein interface residues that facilitates, among

other applications, the creation of well-characterized datasets of protein-protein inter-

face residues used to train and test predictors of interaction sites, and the generation of

information derived from protein structures.

2. The construction of a method for predicting protein-protein interaction patches based on

the results generated by predictors of interface residues. This method will allow scientist to

focus on the development of reliable predictors of interface residues as a way to successfully

predict interface patches.

3. The definition of a reliable method for predicting protein-protein interface residues based

on the similarity between regions of a query protein and regions extracted from a big

dataset of interacting proteins. Unlike existing similarity-based prediction methods, this

method should generate predictions for any given protein structure (even in the absence of

similar proteins) and should be efficient in terms of the required computational resources.

1.3 Dissertation organization

The dissertation is divided into the following sections:

Chapter 1. We introduce the problem of predicting protein-protein interaction sites and

describe the organization of this thesis.

Chapter 2. We present ProtInDb, a database of protein-protein interface residues used

to visualize interaction sites, and to allow the creation of representative datasets that can be

used to train and test predictors of interface residues. The database is accessible using the

Web server at http://protindb.cs.iastate.edu/, which allows users to: (i) visualize the

interface residues in a protein complex deposited in the PDB; (ii) create representative datasets

of protein-protein interface residues according to parameters used to determine the definition of

interface and surface residues, to select the set of representative proteins according to desired

sequence similarity, protein length and quality of the protein structure; and (iii) to download

http://protindb.cs.iastate.edu/
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a reduced version of the database according to user-provided parameters used to define surface

and interface residues and to select between complexes represented as asymmetric units or

biological assemblies in the PDB. A manuscript describing this database has been submitted to

“Database: The journal of biological databases and curation”, an Oxford Journal.

Chapter 3. We introduce PoInterS, a method for predicting protein-protein interaction

sites based on the scores or labels produced by a predictor of interface residues. PoInterS

decomposes the surface of a protein in as many patches as surface residues, where a patch

is composed of a central residue and the closest residues on the surface of the protein, and

utilizes the outcomes generated by a predictor of interface residues for scoring each patch using

different metrics. PoInterS returns the subset of patches with the highest scores as the most

likely to be interaction sites. Comparisons using an independent dataset indicate that PoInterS

outperforms other state-of-the-art predictors of interaction patches, indicating that the problem

of predicting interaction patches can be reduced to the problem of predicting interface residues.

PoInterS is available as a Web server at http://pointers.cs.iastate.edu/. A manuscript

introducing PoInterS is to be submitted to PLoS one.

Chapter 4. We propose PrISE, a method to predict protein-protein interface residues based

on similarity between local structures of proteins. PrISE decomposes a protein into structural

elements composed of a central residue and its surrounding neighbors. A structural element

is represented using data derived from the atomic composition and accessible surface area of

its surface residues. This representation allows PrISE to efficiently extract, from a dataset

of structural elements derived from interacting proteins, a set of similar elements to those of

a query protein. Each similar structural element is weighted according to metrics indicating

whether they were derived from proteins similar to the query protein, or from local regions in

proteins that are similar to local regions in the query protein. These weights are used to compute

a score indicating whether the central residue in the structural element is or is not an interface

residue. Experiments performed using different test datasets indicate that the performance of

PrISE is superior or comparable to state-of-the-art structure-based prediction methods. These

results indicate that methods based only on local structural similarity are a viable alternative for

predicting interface residues. PrISE has been implemented as a Web server available at http://

http://pointers.cs.iastate.edu/
http://prise.cs.iastate.edu/
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prise.cs.iastate.edu/. The paper “Predicting protein-protein interface residues using local

surface structural similarity” describing PrISE was published in BMC Bioinformatics in March

2012 (98).

Chapter 5. We summarize the contributions of the dissertations and describe future work.

http://prise.cs.iastate.edu/
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CHAPTER 2. ProtInDb: A DATA BASE OF PROTEIN-PROTEIN

INTERFACE RESIDUES

Paper submitted to Database: The journal of biological databases and curation

Rafael A. Jordan, Feihong Wu, Drena Dobbs and Vasant Honavar

2.1 Abstract

Protein-protein interactions constitute the physical basis for formation of complexes and

pathways that carry out virtually all major cellular processes. Knowledge of the residues in

the interface between interacting proteins is of special interest in areas such as drug discovery,

protein function prediction and protein docking. Because experimental determination of pro-

tein interfaces is expensive in terms of cost and effort involved, there is an increasing focus on

computational prediction of protein interfaces e.g., using protein interface predictors trained on

datasets extracted from experimentally determined complexes. Such datasets of known inter-

faces can also be used for guiding docking programs, scoring docked conformations, predicting

new complexes, and validating interactions. Against this background, there is an urgent need

for datasets of protein-protein interfaces.

We introduce ProtInDb, a database of protein-protein interface residues that supports vi-

sualization of interface residues on both the amino acid sequence and 3D structure of proteins

of interest and the customized extraction of well-characterized datasets of interface residues.

ProtInDb accommodates a flexible definition of interface residues through user-provided pa-

rameters that specify the criteria that need to be met for a residue to be considered a surface

residue and an interface residue. It also allows users to extract interface residues from asym-

metric units or biological assemblies deposited in the PDB. The datasets returned by ProtInDb
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contain non-redundant protein chains selected according to user-specified sequence identity cut-

off, sequence lengths, and the R-value and resolution of their structures. For each protein chain,

ProtInDb computes a graph representing the interactions of residues on its surface, bipartite

graphs representing the interaction of its residues with residues in other chains in the complex,

mappings between the positions of every residue in the sequence and in the structure, and in-

formation regarding its sequence and the accessible surface area of its residues.

Database URL: http://protindb.cs.iastate.edu

2.2 Introduction

Interactions between proteins have important roles in almost every cellular process, from

DNA replication and transcription, to identification and elimination of pathogens. The identi-

fication of the amino acid residues that participate in the interface between interacting proteins

has applications in problems such the understanding of disease pathways and drug design.

However, the determination of such residues requires methods that are costly and labor inten-

sive (53). Therefore, there is an urgent need to develop computational tools to facilitate the

analysis and prediction of interface residues. Interaction sites have been analyzed from the per-

spectives of their physicochemical and structural properties (92; 180; 181; 37; 4; 104; 103; 68;

201; 33; 207; 63), sequence and structural conservation (187; 25; 161; 76; 26; 34; 69; 105; 212),

types of complexes (91; 40; 144; 16; 67), contact preferences (42; 3; 207), interface promiscuity

(84; 126), etc. One of the goals of these analyses is to identify a set of features that can be

used to differentiate between interface and non-interface residues. Using different combinations

of such features, diverse predictors of protein-protein interface residues have been developed

(213; 43; 11; 56). These predictors can be classified into sequence-based and structure-based.

Sequence-based predictors (62; 145; 205; 200; 47; 193; 32; 133; 202) use information derived from

properties associated with the sequence or with amino acids residues to perform predictions,

whereas structure-based predictors (31; 155; 158; 110; 116; 122; 172; 147; 123; 107; 127; 211) use

information derived from the three dimensional representation of protein complexes. In both

cases, the set of interface residues required to train and evaluate such predictors generally is

extracted from the structure of the proteins stored in the Protein Data Bank (PDB) (12).

http://protindb.cs.iastate.edu
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In this context, we introduce ProtInDb (protein-protein interface residues data base), a

database that allows a user to visualize the interface residues between two or more subunits

(chains) in a protein structure and to efficiently generate datasets of protein-protein interface

residues derived from interacting protein structures deposited in the PDB. Interface residues can

be defined using threshold values on different distance metrics between atoms on two protein

subunits. These metrics include distance between the centers of the atoms, distance between

the Van der Waals surfaces of the atoms, and distance between the centers of α-carbon atoms

of two residues. In addition, the user can define which residues are on the surface of a chain

using thresholds on the relative accessible surface areas. Interface residues can be extracted from

asymmetric units or biological assemblies that had not been deprecated in the PDB. ProtInDb is

updated every two weeks, providing users with up-to-date datasets of protein protein interface

residues. These datasets can be composed of the proteins in a list provided by an user or

of proteins selected from ProtInDb according to several parameters given by a user. These

parameters include sequence identity, R-value, resolution, and length of the protein sequence.

Sequence identity can be used to select non-homologous proteins, allowing the creation of non-

redundant datasets. Other parameters can be used as filters to exclude proteins that do not

satisfy the user preferences. The information about each protein included in a non-redundant

dataset includes its sequence and structure, a mapping between each residue in the structure

and its corresponding position in the sequence, its accessible surface area before complexation,

and graphs representing the neighborhood of each residue on the surface of each subunit and

the interaction between residues of two different subunits. In addition, ProtInDb allows a user

to generate and download a simplified version of the database. This simplified version includes

the following information for each protein in the database: sequence, mappings of the positions

of each residue in the sequence and in the structure, and chains indicating for each residue in

each subunit whether it belongs or not to the interface with another subunit and whether it

is or not on the surface of the subunit. Interface and surface residues are computed according

to parameters defined by the user. ProtInDb has been used in several applications including

extraction of datasets used for: training and evaluating several sequence and or structure-

based, protein interface predictors (95; 202; 98; 97), assessing techniques for ranking protein
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conformations produced by docking programs (203), and for studying conformational changes

of antigens after binding with antibodies (96). The information provided by ProtInDb can be

used in tasks such as analysis of protein interfaces, prediction and validation of protein-protein

interactions, and improving protein docking, among other applications.

2.3 Databases and servers of protein-protein and domain-domain interfaces

In this section we present a list of databases and server providing protein-protein and

domain-domain interface residues, that have been updated on or after 2009. We start enumer-

ating databases of protein-protein interface residues. ProFace (166) allows to analyze protein-

protein interfaces. It receives as input a PDB file and computes several structural properties

such as number of atoms and residues in the interface core and rim, and interface and surface

areas of patches of interface residues. PISA (108) allows the exploration of interfaces, prediction

of quaternary structures, and search for similar interfaces and structures. Options to visualize

interfaces and to present additional information of the interaction sites are given to the user.

This downloadable database is continually updated. PDBsum (111) summarizes the informa-

tion of the structures deposited in the PDB and provides links to another databases, results of

diverse analysis, and schematic diagrams of protein-protein interface residues. PDBsum also

allows to visualize interactions between proteins, and protein surfaces. Using PDBsum it is

possible to download a list of interacting atoms for each pair of interacting chains in a PDB

complex. Protorp (162) allows to analyze some physicochemical properties of protein-protein

interaction site as well as to obtain a list of interacting residues defined as the residues that loss

≥ 1 Å2 after complexation. TCBRP (82) allows the visualization of interface residues, that are

computed as the union of the interface residues of proteins that share ≥ 95% of sequence iden-

tity with a query protein. Interface residues can be defined using threshold values on minimum

distance between atoms and on loss of accessible surface area upon complexation. PICCOLO

(14) is a downloadable relational database that stores 12 different definitions of interfaces using

fixed threshold values. PICCOLO provides information of interacting sites at chain, residue,

and atomic level. Interface residues can be computed from asymmetric units or from biological

assemblies extracted using PISA.
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Several databases of domain-domain interfaces has been created using different definitions

of domains. In SCOPPI (199), based on the definition of domains given in SCOP(134), two

domains are defined to interact if at least five pairs of residues are separated by at least 5 Å.

SCOPPI displays interacting residues on the sequence of the domain. SCOWLP (178), based on

SCOP domains, is oriented to perform analysis of protein interactions at domain level. It also

provides some characterization and visualization tools for interface residues, that are computed

using predefined distances between atom types. The downloadable database 3DID (175) stores

information about 3D interaction domains extracted from Pfam(59). This database provides

an option to visualize interface residues. SNAPPI-DB (89) is a database of domain interactions

that can be downloaded altogether with an application programming interface.

Most of these databases are oriented to the visualization of interface residues, but none of

them allow to generate a representative dataset of protein-protein interfaces. In addition, to

the best of our knowledge, ProtInDb is the only database that provides information about the

topology of the protein surface and the protein-protein interaction sites in form of graphs. Fi-

nally, ProtInDb is the only database that provides together the following functionalities: flexible

definition of interface and surface residues (using thresholds given by the user), an option to

generate information for a list of protein given by the user, the possibility to extract information

from the asymmetric units or the biological assemblies stored in the PDB, and the representation

of the information using text files that can be easily processed in any programming language.

2.4 Materials and Methods

2.4.1 Biological assemblies and asymmetric units.

ProtInDb contains information of the interface residues between the chains contained in

biological assemblies or in asymmetric units. A biological assembly (BIA), or biological unit, is

a macromolecular structure that has been shown or is believed to represent a functional protein

assembly. BIAs can be experimentally determined or computationally defined using software

such as PQS(75) and PISA (108). An asymmetric unit (ASU ) represents the smallest part of a

crystal structure such that will generate a unit cell of the crystal after translation and rotation
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of copies of the ASU. An ASU can be composed of a biological assembly, a part of a biological

assembly, or several biological assemblies.

2.4.2 Protein-protein interface residues.

Interface residues are commonly defined using measures such as loss of solvent accessible

surface area of a residue after the formation of the complex (91), Voronoi Diagrams (156),

minimum distance between atoms (144) (or α-carbon atoms (54)) of amino acid residues in

two different proteins, and minimum distance between the Van der Waals surfaces of amino

acid residues (179). However, it has been shown that different definitions produce interaction

sites that are almost identical in terms of number of residues and accessible surface areas (53).

Therefore, ProtInDb provides three different definitions of interface residues based on three

distance metrics computed between the atoms of two residues: (i) distance between the α-

carbons, (ii) distance between the centers of the atoms, and (iii) distances between the Van der

Waals surfaces of the atoms. Given one of this distance metrics, ProtInDb defines a residue as

an interface residue if at least one of its atoms is separated from one of the atoms in a partner

protein by at most the threshold value provided by the user.

Interface residues extracted from ASU are computed from the subunits belonging to the first

model1 in the PDB file whereas interface residues extracted from BIA are computed considering

all the subunits in all the models in the PDB file.

2.4.3 Protein surface residues.

An amino acid is defined to be a surface residue if its relative accessible surface area (RASA)

in the isolated protein chain is ≤ than a threshold value defined by the user.

2.4.4 Data collection.

The process used to collect the information stored in ProtInDb is summarized in Figure 2.1.

1Models are used in PDB files to store different structures. For example, each conformation of protein
structures determined using nuclear magnetic resonance is represented as a different model. On the other
hand, for the case of biological assemblies composed of several copies of the asymmetric unit, each copy can be
represented as a model.
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Figure 2.1 Flow diagram of the data collection process for a protein.

The main source of information used to collect the data of ProtInDb is the Protein Data

Bank (12). After identifying non-deprecated proteins representing interacting subunits, the

PDB file is stored in ProtInDb along with the following information:

• Amino acid sequences for each subunit in a protein complex. These sequences are ex-

tracted from the atomic coordinates in the PDB files2.

• Mappings between residues in the protein structure and the protein sequence. Each residue

in the coordinates section of a PDB file is uniquely identified by a residue sequence number

and a code for insertion (this unique identification is referred as resId in this document).

A mapping between the resId and the position of the same amino acid in the sequence is

stored to allow the user to efficiently move between structure-based and sequence-based

representations of a protein subunit and vice versa.

• Protein Graphs. A protein graph represents distance relationships between the residues

in a protein subunit. The nodes in the graph represent the residues in a protein subunit.

Two nodes are connected by an edge if the distance between the Van der Waals surfaces of

2Some amino acids of a protein sequence can be absent from the atomic coordinates describing the protein
structure in a PDB file.
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the closest atoms in the corresponding residues is ≤2.5 Å. The edges are labeled with such

distance. Protein graphs are useful to perform tasks such as analysis of characteristics in

the surrounding region of an amino acid, representation of residues using features extracted

from the local environment in a protein, generation of protein patches on the surface of a

protein, and computation of intra domain-domain interface residues for protein subunits

composed of several domains.

• Interface graphs. An interface graph is a bipartite graph of the interacting residues be-

tween two protein subunits. Nodes in a partition represent residues belonging to a subunit.

Two nodes in different partitions (i.e. in different subunits) are connected by an edge if the

distance between the corresponding residues is below some predefined threshold. Edges

are annotated with the minimum distance between atoms in the residues. The prede-

fined thresholds are: 11 Å for interface graphs based on distances between α-carbons, 10

Å for graphs generated using distances between the center of the atoms, and 5.5 Å for

graphs based on distances between the Van der Waals surfaces. These threshold values

were selected to allow efficient computation of the graphs. Interface graphs are useful

to compute sets of protein-protein and domain-domain interface residues and to analyze

structural and physicochemical properties in sets of interacting residues.

• Accessible surface areas of atoms and residues. The accessible surface area (ASA) and

relative accessible surface area (RASA) for atoms and residues in each isolated protein

subunit can be used to determine whether a residue or atom is or not on the surface of

the subunit. This information is computed using the software Naccess (83) with default

parameters.

2.4.5 Implementation details.

ProtInDb data is stored using text files that are described in the documentation section of

the Web server. The computations are performed using Java 1.6 and Jython 2.5 and the Web

application is served using Apache Tomcat 6.0 with servlets written in Jython. All the code

was generated by the authors with exception of the computations of accessible surface areas
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(generated using Naccess (83)) and the generation of lists of representative chains (computed

using PISCES (194)). All the data in ProtInDb is obtained from public databases and the

software used does not impose restrictions for academic use.

2.5 Results and Discussion

2.5.1 User interface.

ProtInDb is accessible as a Web application at http://protindb.cs.iastate.edu. This

application provides options for visualization of the interface residues of a given protein, gen-

eration of datasets of interface residues, and for downloading reduced versions of the database

according to user-defined parameters.

To visualize the interfaces in a PDB complex, the user should provide the following inputs:

(i) The PDB Id of the protein complex; (ii) The Id of the query protein subunit; (iii) An optional

list of the potential interacting subunits in the complex (if this list is not provided the interfaces

will be computed considering all the subunits in the protein); (iv) The definition of interface

residues (i.e. distance between atom centers, between Van der Waals surfaces, or between α-

carbon atom centers) as well as the threshold value used to determine whether a residue belongs

or not to the interface. (v) A threshold value for the RASA that defines whether a residue is or

not on the surface of the query protein; (vi) A selection that indicates whether the interfaces are

computed from the ASU or the BIA; (vii) A selection indicating whether the interface residues

will be computed from the query protein subunit or from its sequence homologs. A sequence

homolog is defined as a protein subunit that shares ≥ 96% sequence identity with the sequence

of the query protein subunit. Interface residues are computed from sequence homologs using the

following steps: (a) interface residues are computed for every sequence homolog, (b) alignments

between the query sequence and the sequence of every homolog are computed, and (c) interface

residues in the sequence homologs are mapped into the query sequence using the alignments

computed in the previous step. Therefore, the interface residues of the query protein can be

seen as the union of the sets of interface residues of its sequence homologs. When interfaces are

http://protindb.cs.iastate.edu


www.manaraa.com

20

computed using sequence homologs, the list of potential interacting subunits provided by the

user is ignored.

An example of the results of the output generated by the option to visualize interface residues

in the Web application is presented in Figure 2.2. The information presented to the user is:

the amino acid sequence, a binary string indicating whether or not each residue in the sequence

belongs to the interface, a binary string indicating whether or not each residue in the sequence

is on the surface of the protein, the resId of the interface residues on the surface of the proteins

and the resId of the interface residues that are buried in the subunit. A 3D representation of

the query subunit and its interface residues is also presented using the software Jmol (78; 73).

This software allows to the users to perform operations such as zooming, rotation, measuring

of distances between amino acids, and generation of different representations of the protein

structures (e.g. ribbons, surfaces, balls and sticks, etc.). If the user selected the option to

compute the interface residues from the set of sequence homologous of the query protein, the

interface residues for each homolog are displayed as a binary string (as seen in Figure 2.2).

The Web application also allows users to build non-redundant datasets of protein-protein

interface residues. An example of the Web interface used to generate these datasets is presented

in Figure 2.3. The generation of a list of non-redundant proteins starts by removing non-

interacting proteins from the list of all the protein subunits in ProtInDb or from a list of proteins

provided by the user. Then, the software PISCES (194) is used to filter out proteins with lower

structural quality (according to user-defined parameters on the resolution and the R-value) or

with sequence lengths outside a range defined by the user. The list of remaining proteins is

used by PISCES to build the set of representative proteins according to the following algorithm:

the protein with the best resolution and R-value in the list is selected as representative. This

protein, and proteins sharing sequence identity > i (where i is defined by the user) with it, are

excluded from the list. These two steps are repeated until the list is empty. Once the set of

representative proteins have been computed, the sequence, maps between the residues in the

sequence and the structure, proteins graphs, interfaces graphs, and accessible surface areas, are
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Figure 2.2 Example of the output corresponding to the visualization of interface
residues. Interface residues of the subunit A in protein PDB:2f03 are shown in
different colors. White spheres indicate non-interface atoms. Atoms in interface
residues are colored according to the amino acid to which they belong.
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computed according to the parameters specified by the user. Files containing this information,

and the PDB files of the representative proteins, are compressed by ProtInDb. Finally, an email

containing an URL pointing to the compressed file is send to the user. All the data is stored

in machine-readable text files organized in several directories. A complete description of these

files and directories is provided in the documentation section of the Web application.

The user also can generate and download a copy of the basic information of the dataset. This

information includes the sequence, maps between residues in the sequence and the structure,

and chains indicating whether each residue in the sequence is or not on the surface of the isolated

subunit and whether each residue in the sequence belongs or not to the interface of the subunit

with every other subunit in the complex. The previous information is computed according to

parameters specified by the user.

2.5.2 Updates and content.

The first version of the data base was created in May 2009 and it has been updated every

two weeks. The update process removes information of complexes that have been deprecated in

the PDB and adds information of new or updated complexes. A summary of the information

contained in ProtInDb at March 3, 2012 is presented in Table 2.1.

Table 2.1 Summary of the information stored in ProtInDb at March 3, 2012. The
row labeled “Number of protein subunits” indicates the number of protein chains in
asymmetric units and the number of protein chains with unique name in biological
assemblies (i.e. every chain in a biological assembly is counted once even if it has
several copies in the assembly).

Description ASU BIA

Number of complexes with
> 1 subunit

43,029 39,866

Number of protein
subunits

162,145 112,762

Number of subunits
present both in ASU and
BIA

105,529
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Figure 2.3 Screen shot of the Web interface used to generate datasets of pro-
tein-protein interface residues.
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2.5.3 Examples of applications that use ProtInDb.

In addition to the application used to visualize interface residues, ProtInDb has been used

to generate datasets to train and test predictors of interface residues and interaction sites, and

to perform analysis concerning interface residues.

The information in ProtInDb is used by predictors of interface residues based on sequence

and structural similarity. NPS-HomPPI and PS-HomPPI are two predictors of protein-protein

binding sites based on protein sequence homology (202). PS-HomPPI predict interface residues

that are specific to the interaction between two given proteins whereas NPS-HomPPI predicts

interface residues for a query protein without considering its interaction partners. These predic-

tors estimate the interface residues of a query protein from the interface residues of its sequence

homologs. The interface residues of such homologs are computed using ProtInDb. Given that

ProtInDb is constantly updated, the predictions of PS-HomPPI and NPS-HomPPI always con-

sider the latest proteins included in the PDB. PrISEC (98) is a predictor of protein-protein

interface residues based on the similarity between local substructures on the surface of a pro-

tein. A local substructure represents the atomic composition and the accessible surface area

of a patch on the protein surface. Given the local substructures of a query protein, PrISEC

searches for similar substructures in a precomputed database derived from known interacting

proteins. The information in this database has been completely extracted from ProtInDb.

ProtInDb has been utilized to build non-redundant datasets used to train and test several

machine learning predictors of interface residues. PoInterS-SVM (95; 97) is a predictor of

protein-protein interaction sites. An interaction site is defined as a semi-circular patch on the

surface of the protein that cover most of the actual interface residues. To predict interaction

sites, PoInterS-SVM decomposes the surface of the protein in patches that are ranked using

information derived from the scores or the interface/non-interface labels generated by a predictor

of interface residues. Different predictors of interface residues were trained and tested using

non-redundant datasets extracted from ProtInDb. The predictor that achieved the highest

performance was based on support vector machines.



www.manaraa.com

25

ProtInDb also was used to build a benchmarking dataset of conformational epitopes that

included information from bound and unbound structures (96). This dataset was used to

compare the performance of different discontinuous B-cell epitopes predictors.

2.6 Summary

ProtInDb offers a useful resource for the research community interested in analysis and pre-

diction of protein interfaces, validating protein-protein interactions, improving protein-protein

docking, and predicting new complexes, among other applications. ProtInDb supports visual-

ization of protein-protein interface residues and creation of non-redundant datasets involving

interacting proteins in the PDB. Visualization presents a user a graphical representation of pro-

tein structures and the set of amino acid residues that form the interface between two or more

subunits in a protein complex. These interface residues are determined using a set of parame-

ters defined by the user. Datasets of interface residues returned by ProtInDb provide structural

information of interacting protein subunits extracted from asymmetric units and/or biological

assemblies. Such information includes sequences, maps between residues in the structure and

the sequence, protein graphs representing the interactions between the residues in a protein sub-

unit, interface graphs representing interaction between residues in different proteins subunits,

and data about the accessible surface area of each isolated subunit. Support for automated

and customizable extraction of datasets based on user-specified parameters allows users to save

considerable time and effort in tasks such as statistical analysis of protein-protein interfaces

or domain-domain interfaces; scoring docked conformations or guiding docking; and retriev-

ing datasets for training and evaluating alternative predictors of interface residues, hot spot

residues, conformational epitopes, etc. The information contained in ProtInDb also can also

be used in applications such as prediction of protein-protein interactions, selection of mutants

for experimental verification of protein-protein interactions, understanding of protein functions,

prediction of drugability for protein-protein interactions, and development of new therapeutic

drugs.



www.manaraa.com

26

2.7 Availability and requirements

ProtInDb is periodically updated and is freely accessible for academic use at http://

protindb.cs.iastate.edu.

2.8 List of abbreviations

ASA: Accessible surface area.

ASU : Asymmetric units.

BIA: Biological assembly.

RASA: Relative accessible surface area.

resId : Identification of a residue in the coordinates section of a PDB file. This identifica-

tion is composed of a residue sequence number and a code for insertion of residues specified

in positions 23 to 27 in the atomic section of the PDB files (see http://www.wwpdb.org/

documentation/format32/sect9.html)

ProtInDb: Data base of protein-protein interface residues.
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CHAPTER 3. A MODULAR APPROACH TO PREDICT

PROTEIN-PROTEIN INTERACTION SITES

Paper to be submitted to PLoS One

Rafael A. Jordan, Yasser EL-Manzalawy, Drena Dobbs and Vasant Honavar

3.1 Abstract

Background: Protein-protein interactions play a critical role in protein function. Reliable

identification of protein-protein interfaces is important for understanding the physical basis

of protein complexes and their role in networks that underly virtually all cellular processes,

predicting protein function, guiding protein docking, and developing new drugs. Because of

the high cost of experimental determination of protein interfaces, there is an urgent need for

reliable computational methods for interface prediction.

Results: We present PoInterS, a novel modular approach for predicting protein interaction

sites using predicted protein-protein interface residues. PoInterS decomposes the surface of

a protein into patches and ranks each patch based on the predicted protein-protein interface

residues in the patch. The top-ranked patches are combined to obtain the predicted interface

site of the protein. The modular design of PoInterS allows it to use predictions provided

by any available protein interface residue predictor for ranking the surface patches of a query

protein. Our experiments using leave-one-protein-out cross-validation on a benchmark dataset

of 220 proteins show that PoInterS is able to correctly identify the interfaces in 81% of the

cases. Our experiments using a blind dataset of 24 proteins derived from the first eight rounds

in CAPRI show that PoInterS outperforms SHARP 2 and PPI-Pred, which are two state-of-

the-art methods for predicting protein interface patches.
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Conclusions: PoInterS is offers a modular approach to computational prediction of

protein-protein interaction sites that is competitive with the current state-of-the-art methods.

An instance of the PoInterS method that uses a structure-based support vector machine pre-

dictor of interface residues has been implemented as a Web server which is freely available at

http://pointers.cs.iastate.edu

3.2 Background

Protein-protein interactions constitute the physical basis for formation of complexes and

pathways that carry out virtually all major cellular processes. Recent advances in high through-

put techniques for experimental determination of protein interaction networks (169) have im-

proved our understanding of how proteins interact together to perform different biological pro-

cesses (186; 64; 65; 117; 176; 52). However, to gain a deeper understanding of the mechanisms

involved in protein interactions it is important to identify the sites used for a protein to interact

with another protein. Given that the experimental determination of protein binding sites is

costly and labor intensive (53), there is an urgent need for reliable computational approaches

to identify protein-protein interaction sites. In addition to providing important clues to bio-

logical function of novel proteins, computational prediction of protein-protein interaction sites

can help to design focused experiments aimed at understanding specific protein interactions,

develop new therapeutic drugs that inhibit the interaction between specific proteins involved in

disease pathways, and reduce the search space in macromolecular docking.

Prediction of protein-protein interaction sites has been approached from two different per-

spectives: prediction of interface residues, and prediction of interface patches.

Protein-protein interface residues predictors (PPIRPs) classify each amino acid residue in

the protein into interface residues or non interface residues based typically on the features

describing the residue and its sequence or structural neighbors and/or its homologs. PPIRPs can

be categorized into two major types: sequence-based and structure-based. In sequence-based

PPIRPs (62; 145; 204; 205; 206; 190; 200; 77; 81; 70; 32; 44; 172) use sequence neighbors of the

target residue to extract features that form the input to the classifier. Structure-based PPIRPs

(214; 54; 57; 31; 24; 35; 113; 110; 115; 155; 158; 191; 79; 116; 165; 11; 49; 122; 121; 124; 172; 107;

http://pointers.cs.iastate.edu
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123) use a set of structural neighbors of the target residue to extract features that represent each

residue on the surface. A variety of features (43; 183) derived from the sequence of the target

protein (e.g., amino acid identity physico-chemical properties) (91; 180; 93; 29; 40; 207; 130)

its structure (e.g. accessible surface area, secondary structure, temperature factor, protrusion,

planarity) (91; 180; 93; 181; 29; 40; 201; 207; 130) or its homologs (e.g. profiles generated from

multiple sequence alignments) (181; 11; 50) have been explored in the literature. Because no

single feature has been found to be sufficient for reliable prediction of protein-protein interaction

sites (53), modern methods take advantage of machine learning approaches that can make use

of multiple features to achieve good prediction results (213).

Protein-protein interface patch predictors (PPIPPs) deal with the identification of areas on

the surface of the protein that contain most of the residues in the interface (interface patches).

This approach allows users to focus their studies on a few high-ranked regions on the surface of

the protein instead of examining predicted interface residues that can be scattered on different

sites on the protein structure. PPIPPs have been developed using two approaches: The first

approach constructs patches using clusters of closest atoms or residues on the surface of the

protein that are likely to be part of protein interfaces (139; 58; 119; 138; 163; 153; 51). The

second approach, on which our work is focused, deals with the selection of patches that are

likely to be part of protein interfaces from the set of all pre-computed patches on the protein

surface. Another difference is that the methods in the second approach assign a rank to each

predicted patch whereas the methods in the first approach do not.

One of the earliest examples of the second class of PPIPPs was proposed by Jones and

Thornton (93; 94), who defined a patch as a central residue and its m closest neighbors on the

surface of the protein according to the distance between their α-carbons, where m was computed

as 1.9n0.6, and n is the number of residues in the protein. All patches on the surface of the

protein were ranked using a score combining solvation potentials, residue interface propensities,

hydrophobicity, protrusion, and accessible surface area values. The top-ranked patches consti-

tute the prediction result. An improvement of this method (132; 90) was achieved using patches

of size 1.91n0.55 and a new scoring function that included solvation potentials, hydrophobicity,

accessible surface areas and residue interface propensities. The resulting predictor was called
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SHARP 2. Liang et al. (120) used a side-chain energy scoring function to rank patches formed

by a central residue and its 20 surrounding residues. The scoring function was defined as a lin-

ear combination of features such as atom contact surface, hydrogen bond energy, electrostatic

interactions, desolvation energy, rotamer intrinsic energy, and disulfide bond energy. Bradford

and Westhead (22) developed PPI-Pred using a different approach for representing patches and

for predicting interaction sites. They defined basic patches using spheres covering from 6% to

8% of the residues in the protein. These basic patches were extended to include all residues in

cavities or protrusions when the patch formed a ring, or decreased to consider only the largest

patch from a set of unconnected patches enclosed inside the sphere. Each patch was represented

using the means and standard deviations of the normalized values of shape index, curvedness,

conservation score, electrostatic potential, hydrophobicity, residue interface propensity and sol-

vent accessible surface area of the patch components. These patches were ranked using the

scores generated by a predictor of interface patches based on a support vector machine. A set

of non-overlapping top-ranked patches were returned as the predicted protein-protein interface

sites. This method was improved in (21) by replacing the support vector machine classifier by

a Bayesian network trained using the same dataset, features, and patch definition as in their

previous work. Negi and Braun (137) defined a patch as a central residue and its n closest

neighbors in a sphere of radius R, achieving a good balance between precision and sensitivity

(recall) with R = 12 Å. Each patch in the surface of a protein was ranked using a score function

based on the accessible surface area and the interface and surface propensities of the residues in

the patch. Finally, a percentage of the top-ranked patches is returned as the prediction result.

Against this background, we introduce PoInterS (prediction of protein-protein interaction

sites), a fast and modular method for predicting protein-protein interface patches for unbound

proteins that allows users to focus their studies in a small set of ranked patches composed of

close residues in the structure. PoInterS defines a patch as a central residue and its closest

neighboring residues on the surface of the protein, which produces as many patches as surface

residues on a protein. Each patch is ranked using the outcome produced by a protein-protein

interface residues predictor, and three non-overlapping top-ranked patches are selected as the

most likely to be interaction sites. Extensive experiments were performed to analyze the impact
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that several prediction algorithms and different techniques for representing and sampling data

have in the final performance of several PoInterS classifiers. We also study the effect of using

different patch ranking schemes and the relationship between the observed performance of in-

terface residues predictors and the performance of the interface patches predictors. Based on

our experiments, we developed a predictor of protein-protein interface patches (PoInterS-SVM )

that uses a predictor of interface residues based on a support vector machine. Evaluations using

a non-redundant dataset of 24 proteins extracted from the first eight rounds of CAPRI indicate

that the performance of PoInterS-SVM is superior to that of SHARP 2 (132) and PPI-Pred

(22).

3.3 Methods

3.3.1 Surface residues

A residue is considered to be a surface residue if its relative accessible surface area in the

monomer is > 5%. Relative accessible surface areas are computed using the program NACCESS

(83) with default parameters.

3.3.2 Surface patches

We used the definition of surface patches proposed by Jones and Thornton (93): A surface

patch is composed of a central surface residue and its m nearest surface residues according

to their α-carbon Euclidean distances in the Brookhaven PDB file. Therefore, there are as

many patches as surface residues in a protein. To avoid the construction of patches forming

rings of residues around the protein surface, only residues with an angle < 110 ◦ between their

solvent vector and the patch central residue solvent vector are considered. A solvent vector

is computed as the inverse of the vector between the α-carbon of a residue and the center of

gravity of the α-carbons of its ten nearest surface residues. The number m of neighboring

residues involved in a patch was computed as an approximate correlation between the number

n of amino-acid residues of a protein and its number of interface residues. In our experiments,

we used two different patch sizes, m = 1.92n0.56 and m = 1.91n0.55, as defined in (92; 94) and
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(90) respectively.

3.3.3 Representative interface patches

A patch is considered a representative interface patch if it covers most of the observed

interface residues. A representative interface patch is used as the base for computing the

performance of a prediction.

3.3.4 Datasets

Cross validation dataset

The cross validation dataset, or CV dataset, is composed of 220 protein chains with more

than 40 residues, sharing ≤ 30% sequence identity, with resolution ≤ 3.0 Å, and R-values ≤ 0.3.

In order to produce a small but representative dataset, proteins derived from complexes labeled

as homodimers in the Protein Data Bank (PDB) (12) were extracted and subject to several

filtering steps. First, complexes with only one protein chain as well as non X-ray determined

protein structures were filtered out. Then, we used PISCES (194) with default parameters to

select a set of protein chains that satisfied the constraints previously described. In this dataset,

an interface residue is defined as a surface residue that loss > 1 Å2 of its accessible surface area

after the formation of a dimeric complex. The dimers used to compute the interface residues

were composed of the protein chain selected by PISCES and the largest chain in the same PDB

complex. The final dataset is composed of 62,795 residues, from which 46,456 are on the surface

and 10,373 belong to the interface. An enumeration of these 220 protein chains is available in

the additional file cvDataset.txt.

Test datasets

We used two docking benchmark datasets to perform a blind validation of PoInterS and

to compare PoInterS with two protein-protein interaction site prediction methods publicly

available as online Web servers. The first test dataset, called ZDOCK, was used to conduct a

blind validation of several PoInterS predictors. This dataset is composed of 299 chains derived

from all the binary interactions contained in the 124 test cases of the docking Benchmark 3.0
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(85). Each test case in the docking benchmark 3.0 is composed of a receptor and one or more

ligands. Each protein in this non-redundant benchmark dataset consists of at least 30 amino

acids and have resolution better than 3.25 Å . Non-redundancy was achieved using structural

classification of proteins by avoiding any two cases to belong to the same family-family pair

in the SCOP database. For the ZDOCK dataset, an interface residue is defined as a surface

residue whose α-carbon is separated by at most 7 Å from the α-carbon of another residue

in a different protein chain. This dataset contains 63,501 residues, from which 47,325 are on

the surface, and 8,465 are interface residues. A list of the 299 proteins in this blind dataset is

provided in the supplementary file zdockDataset.txt.

The second test dataset, called Capri, was used to compare PoInterS against the methods

PPI-Pred (22) and SHARP 2 (90). This dataset is composed of 24 protein units retrieved

from 19 targets used in the first eight rounds of CAPRI (critical assessment of prediction of

interactions) (87; 86). Fifteen of these chains were used in (22) to evaluate the performance of

PPI-Pred, and they share less than 20% sequence identity with the nine chains recently added.

Each chain was associated with the partner that produces the largest interaction site in terms

of number of residues. Interface residues were extracted from the contact residue information

provided in CAPRI. This dataset has 5,940 residues, 4,546 surface residues and 582 interface

residues. The list of selected dimers are presented in the supplementary file capriDataset.txt.

3.3.5 Prediction of protein-protein interaction sites (PoInterS)

The main idea behind the PoInterS method is illustrated in Figure 3.1. Given a query

protein structure, PoInterS uses the following three-step procedure to predict interaction sites:

1. The surface of the protein is divided into a set of overlapping surface patches.

2. Interface residues in the query protein are predicted using a PPIRP.

3. The patches are ranked according to their potential for containing most interface residues,

estimated using the information generated by the PPIRP.
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Figure 3.1 Flow diagram of the PoInterS prediction method.

4. The three top-ranked patches sharing less than 30% of residues are selected as the best

candidates to be interacting sites1.

We evaluated four different patch ranking schemes based on the prediction generated by the

PPIRP for each residue included in the patch. The rationale behind these schemes is that the

most predicted interface residues are in a patch, the most relevant the patch is in the interaction

between two proteins. The first ranking scheme considers the number of predicted interfaces in

the patch to assign a ranking score, and is computed as:

Classs(p) =

∑

r∈int(p) 1

s

where s is the number of residues in a patch p and int(p) denotes the set of predicted interface

residues in p.

The second scheme considers the concentration of predicted interface residues around the cen-

tral residue of the patch:

ClassDiss(p) =

∑

r∈int(p)
1

d(r,c)

s

where c represents the central residue of the patch and d(r, c) is one when r = c, or the euclidean

distance between the closest atoms in residues r and c when r 6= c.
1The 30% threshold value was determined experimentally using a leave-one-protein-out cross validation ex-

periment on the cross-validation dataset
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The third scheme uses the probabilities estimated by the PPIRP indicating whether the residues

in a patch belong to the protein interface:

Probs(p) =

∑

r∈p probability(r)

s

where r ∈ p represents each residue in the patch p, and probability(r) denotes the probability

that r is an interface residue estimated by the PPIRP.

The last scheme weights the probabilities estimated by the PPIRP using the distances form the

central residue to each residue in the patch, and is defined as:

ProbDiss(p) =

∑

r∈p
probability(r)

d(c,r)

s

The scores generated by these ranking schemes are in the interval [0,1], and the highest the

score, the most relevant a patch is in the interface between two proteins.

3.3.6 Prediction of interface residues

We built different predictors of protein-protein interface residues to evaluate the performance

of PoInterS according to different classification algorithms, feature representation schemes, and

techniques for dealing with unbalanced and unnormalized data.

We first train protein interface residue predictors that accept, as input, a set of features

describing each residue and produce, as output, a label that indicating whether the residue

belongs or not to the protein interface. Once such a protein interface residue predictor has

been created, it is used to label each residue in a query protein (monomer) as an interface or

non-interface residue

The input to the protein interface residue predictor typically consists of features extracted

from the residue and its sequence or structural neighbors. In the sequence-based representation,

a residue aj is described by a sliding window (aj−k, aj−k+1, ..., aj , ..., aj+k−1, aj+k) containing

data of a specific feature for the 2k+1 adjacent residues in the protein sequence. In the structure-

based representation, a surface residue sj is described by a tuple (sj, sj,1, sj,2, ..., sj,(2k)) in which

sj,r corresponds to the r -th surface residue closest to sj. In this study, each residue sj was
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described using features that have been successfully applied to predict protein-protein interface

residues: Amino acid identity (205), secondary structure (139), crystallographic temperature

factor (35; 123) and relative accessible surface area (RASA) (31; 155; 123). The secondary

structure was computed using the Stride stand-alone program (60). The temperature factor for

each residue was calculated as the averaged temperature factor of its atoms in the PDB file.

The RASA was computed using software the NACCESS (83) with default parameters.

We experimented with four different machine learning methods for predicting protein-protein

interface residues in the context of protein-protein interface patches prediction: Naive Bayes

(NB), decision trees (DT) , logistic regression (LR) and support vector machine (SVM). Naive

Bayes is a generative model that assumes that the variables used for classification are condi-

tionally independent given the target class. Decision trees use elements of information theory to

model dependencies among a set of variables describing instances in a training dataset. These

dependencies represent a set of rules that may be used to predict the class associated with

every instance in a testing dataset (15). The training process of DT classifiers is very efficient

and the resulting models are easy to understand. Logistic regression classifiers model an un-

derlying binomial distribution of the data as a linear function of the variables. LR predictors

may produce more accurate results than NB if the independence assumption of NB does not

holds (140). Support vector machines (188) compute a set of representative samples (support

vectors) that maximize the separation distance between the classes, and use the support vectors

to perform classification. In general, the performance of SVM is better than the performance of

the other three methods, but the construction of a model takes longer. When a sample space is

not linearly separable, Logistic regression and SVM models may use kernels to try to transform

the space into one that is linearly separable. We used the implementation of these supervised

machine learning algorithms provided by the Weka software (72). The models for naive Bayes,

decision trees and logistic regression were trained using default parameters. The decision trees

were built using the J48 algorithm. The SVM classifiers were trained using SMO (154) with pa-

rameters C = 1, ǫ = 1E− 12, and using a radial basis function kernel with parameter γ = 0.01.

The values for C and γ were selected using a grid search with steps of 10−i in a subset of 100

proteins in the cross validation dataset for ranges varying from 100 to 0.1 and from 0.1 to 0.001
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respectively.

The performance of a classifier may be affected by factors such as the numerical representa-

tion of the data or how balanced is the ratio of interface/non-interface residues in the dataset

used to train the model. For the problem of predicting protein-protein interface residues, the

number of non-interface residues is generally larger than the number of interfaces. Therefore,

a bias towards non-interface residues can be introduced in the prediction. This problem may

be addressed by using sampling techniques on the training dataset oriented to select an ap-

proximately equal number of interface and non-interface samples. Three sampling techniques

were tested in this study: (1) under-sampling of non-interface residues by randomly removing

non-interface examples until achieving an equal number of interface/non-interface residues; (2)

over-sampling of interface residues by introducing 50% of additional synthetic interface exam-

ples using SMOTE (30); and (3) balancing first performing over-sampling of interface residues

and then under-sampling of non-interface residues. On the other hand, the training time and

the performance of several classifiers may be affected by the representation of numerical data.

Hence, experiments with raw data and with data scaled to the interval [-1,1] were performed.

Given that RASA values can lie in the interval [0,100], the normalization of these values was

computed as RASA
50 − 1.0. The transformation of temperature factor values was performed for

each individual protein as 2×(bFactor−minBfactor)
maxBFactor−minBFactor

−1, where bFactor was the temperature factor

for each residue, and minBFactor and maxBFactor were the smallest and largest tempera-

ture factor values in the protein respectively. The impact of different choices of the parameters

previously described in the performance of the prediction of interaction sites are discussed in

the next section.

3.3.7 Performance evaluation

We evaluated the performance of protein-protein interface residues predictors using the

following metrics:

Accuracy =
TP + TN

N
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Precision+ =
TP

TP + FP

Recall+ =
TP

TP + FN

Precision− =
TN

TN + FN

Recall− =
TN

TN + FP

CC =
(TP × TN)− (FP × FN)

√

(TP + FN)× (TP + FP )× (TN + FP )× (TN + FN)

Where TP denotes the number of residues belonging to the interface that are correctly

classified, TN residues that does not belong to the interface and are correctly classified, FP

misclassified residues that does not belong to the interface, FN misclassified residues that

belong to the interface, and N = TP + TN + FP + FN 2. Precision+ refers to the precision

of the classification of interface residues and Precision− to the precision of the classification

of non-interface residues. Similar notation is used for Recall. CC refers to the Matthews

correlation coefficient.

We evaluate the performance of a prediction of protein-protein interface patches using over-

lap, that is defined as:

Overlap(p) =
| obs ∩ resp |

| intr |

where obs is the set of observed interface residues in the protein, resp is the set of residues in

patch p, intr is the set of observed interface residues in a representative interface patch, and

| ◦ | denotes the number of elements in the set ◦. Overlap is equivalent to RelativeOverlap

in (94; 90), and according to their work, we consider a prediction successfully if overlap ≥

0.7. However, a more informative performance evaluation is provided in some sections of this

paper using overlap curves in which each point corresponds to the number (or percentage) or

predictions that are considered correct for a specific value of overlap.
2To decide whether or not a residue is predicted as an interface residue, these terms were computed using

the default threshold (0.5) on the scores generated by the predictors of interface residues.
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The performance of predictors of protein-protein interface patches has also been evaluated

in the literature using the following measures:

Specificity(p) =
| obs ∩ resp |

| resp |

Sensitivity(p) =
| obs ∩ resp |

| obs |

Specificity was defined in (22; 153) and is equivalent to Precision in (21). Sensitivity was

defined in (22) and is equivalent to Coverage in (21) and to PercentageOverlap in (94; 90).

However, the use of these measures may be misleading because they are very sensitive to the

size of the patch: Given that small patches may generate low sensitivity and high specificity

values, whereas large patches may cause low specificity and high sensitivity values, a perfect

prediction (i.e. a prediction that covers the same number of interface residues than those in a

representative interface patch) may have low sensitivity and/or specificity, so it could be refused

as a correct prediction. Therefore, we used these two measures for the sake of completeness in

the comparison of the performances of PoInterS, SHARP 2, and PPI-Pred.

The predictors of interface residues and interface patches were evaluated using leave-one-

protein-out cross validation experiments and also using independent testing datasets. In both

cases, the performance measures were computed using the set of residues composed of all the

residues in all the proteins in the testing dataset. A detailed description of the experimental

conditions of each experiment is provided in the following section .

The probability that a randomly chosen patch correctly predicts interaction sites depends

on the size of the patch (e.g. the probability of randomly finding an interface patch is larger for

patches covering half of the protein residues than for patches composed by only one residue).

This probability may be determined using the method originally described in (22; 21): First, we

compute the probability p of randomly finding a patch that satisfies the definition of a successful

prediction as the number of patches that comply with the success definition divided by the total

number of patches in a protein. Then, we compute the probability of success when i predicted

patches are selected as the result of the prediction as P = 1− (1− p)i.
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3.4 Experiments and results

In this section we present the results of several experiments carried out to build a PoInterS -

based PPIPP and to compare the performance of this PPIPP against that of SHARP 2 and

PPI-Pred, two predictors of interface patches that are available as Web servers.

We used two steps to build a PoInterS -based predictor of interface patches. First, we

carried out several leave-one-protein-out cross validation experiments using the CV dataset to

determine the effect that different configurations commonly used to build PPIRP and different

patch sizes and ranking schemes have in the performance of the PPIPPs. We then used the

ZDOCK dataset to validate the results obtained in the cross-validation experiments and to

study the relationship between the performance of different PPIRPs and the performance of

the corresponding PPIPP. Based on the results of these experiments, we selected a PPIPP

based on a SVM predictor of protein-protein interface residues (PoInterS-SVM ). We compare

the performances of PoInterS-SVM, SHARP 2, and PPI-Pred using the 24 proteins of the Capri

dataset.

3.4.1 Cross-validation experiments

To evaluate several PoInterS predictors based on various PPIRPs, we conducted several

leave-one-protein-out cross-validation tests on the 220 proteins of the cross validation dataset

(CV). For producing different PPIRPs we used: (i) three machine learning algorithms (NB,

DT, and LR3); (ii) four training sampling techniques on the data used to train the PPIRP (as

described in the Methods section); (iii) two representations of the data (sequence-based and

structure-based). In addition, we experimented with two patch sizes and different approaches

for ranking surface patches using the results of the PPIRP predictors.

Performance evaluation of PoInterS using different sequence-based PPIRPs

As explained in the methods section, a sequence-based predictor uses a sliding window of

contiguous residues in the protein sequence as inputs for predictors of interface residues. The

3SVM algorithms were not considered for these experiments because the time needed to train models in this
cross-validation experiments was prohibitive (around a week for each model).
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output of these predictors is a probability or a binary label indicating whether each residue

is or not an interface residue. These outputs are used to rank all the patches from a query

protein, and the top three non overlapping ranked patches are returned as the most likely to

be interaction sites. The prediction is considered as a success if the overlap between any of the

top three patches and the real interaction site is at least 0.7.

In order to determine the best sequence-based PoInterS predictors, 48 leave-one protein-out

tests (corresponding to all the combinations of classifiers, ranking schemes and sampling tech-

niques) were performed using the following experimental settings: Each residue is represented

using the residues in a window of nine amino acids in the sequence; the maximum overlapping

allowed between any pair of the ranked top three patches is 30%; and the size of the patch is

1.91n0.55, where n is the number of residues of the monomer. Table 3.1 summarizes the results

of the best sequence-based PoInterS classifiers using three PPIRPs (NB, DT, and LR) on the

220 proteins in the cross validation datasets using different ranking schemes and data sampling

techniques.

The best performance was obtained using LR as PPIRP, applying under sampling on the

training data, and using the Classs ranking scheme. Predictions using NB outperformed those

using DT for all cases, and those using LR when oversampling was used. Predictions using

under sampling were significantly better than predictions with raw data or using only over

sampling. In particular, the difference between LR with under sampling (136 correctly predicted

monomers) and LR using no sampling technique (100 correctly predicted monomers) emphasizes

the bias towards non-interface residues that are introduced in the prediction when the dataset

is unbalanced.

The results of a second experiment to study the effect of the window size parameter in the

prediction performances are shown in Figure 3.2. The results show that the size of the sliding

sequence window affects the performance of the PPIPP based on the LR classifier. A window

of nine residues provided the best overall performance. In addition, predictions considering

only the top ranked patch accounted for 57% to 64% of the correct predictions for the different

window sizes, whereas the contributions of the second and third patches combined ranged from

36% to 43%.
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Table 3.1 Cross-validation results using sequence-based features in windows of 9
residues. The ranking column refers to the method using to rank the patches. The
last four columns show the number of successful predictions and their corresponding
percentage in reference to the 220 monomers in the dataset. “Patch 1 ” refers to
the results when only the top ranked patch is considered. Similarly, “Patch 2 ” and
“Patch 3 ” refer to the evaluation using the second and third top-ranked patches
respectively. The table has been divided on four blocks depending on the sampling
technique used on the training dataset and indicated in the third column.

Classifier Ranking Sampling Successful
predictions

(%)

Patch 1 (%) Patch 2 (%) Patch 3 (%)

NB Classs None 98 (44.55) 33 (33.67) 29 (29.59) 36 (36.73)
DT Probs None 95 (43.18) 33 (34.74) 42 (44.21) 20 (21.05)
LR Classs None 100 (45.45) 41 (41.00) 29 (29.00) 30 (30.00)
NB Classs Under 131 (59.55) 63 (48.09) 38 (29.01) 30 (22.90)
DT Probs Under 127 (57.73) 74 (58.27) 39 (30.71) 14 (11.02)
LR Classs Under 136 (61.82) 77 (56.62) 35 (25.74) 24 (17.65)
NB Probs Over 109 (49.55) 59 (54.13) 23 (21.10) 27 (24.77)
DT Classs Over 104 (47.27) 35 (33.65) 34 (32.69) 35 (33.65)
LR Classs Over 105 (47.73) 46 (43.81) 33 (31.43) 26 (24.76)
NB Classs Over&Under 131 (59.55) 63 (48.09) 38 (29.01) 30 (22.90)
DT Probs Over&Under 125 (56.82) 71 (56.80) 35 (28.00) 19 (15.20)
LR Classs Over&Under 125 (56.82) 67 (53.60) 32 (25.60) 26 (20.80)
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Figure 3.2 Prediction results using different window sizes for the sequence-based
LR predictor. These results correspond to experiments with the cross-validation
dataset using patches of size 1.91n0.55. “Patch 1 ” refers to the results obtained
considering the top-ranked patch.

Performance evaluation of PoInterS using different structure-based PPIRPs

In structure-based classifiers, each residue was represented with information associated with

the residue and its n-nearest surface neighbors. Such information included relative accessible

surface area, residue identity, secondary structure and B-factor. A total of 96 different combina-

tions of classifiers, ranking schemes, sampling techniques and representation of numerical values

(i.e. normalized and non-normalized) were evaluated using leave-one-protein-out test on the CV

dataset. The performance comparison of the best 12 predictors is given in Table 3.2. The best

performance was achieved by a predictor that used a LR PPIRP trained with under-sampled

and normalized data, that ranked the patches using the Probs scheme. This table also shows

that predictors based on LR outperform those based on NB and DT for all sampling techniques

except over sampling, where the performance of PPIPP based on DT is superior.

We also analyze the effect that the size of the structure window has in the performance

of the interface patch predictor based on LR. Figure 3.3 shows that PoInterS predictors us-

ing structure-based LR PPIRP seem to less sensitive to the window size parameter than the

sequence-base predictors. However, when only the information of the two top-ranked patches

is considered, the best performance is achieved using patches of nine residues.
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Table 3.2 Cross-validation results using structure-based features in windows of 9
residues. The experiments were performed on 220 monomers using patches of size
1.91n0.55. Each of the last four columns show the number and the percentage of
successful predictions in reference to the 220 monomers. The table has been divided
in four blocks depending on the sampling technique used for the training dataset.
Column Norm indicates whether the numerical data was or not normalized. Other
column labels are explained in Table 3.1.

Classifier Ranking Normalized?Sampling Successful
predictions

(%)

Patch 1 (%) Patch 2(%) Patch 3(%)

NB Probs No None 160 (72.73) 119 (74.38) 27 (16.88) 14 (8.75)
DT Classs Yes None 166 (75.45) 108 (65.06) 37 (22.29) 21 (12.65)
LR Probs Yes None 170 (77.27) 123 (72.35) 33 (19.41) 14 (8.24)
NB Probs No Under 159 (72.27) 110 (69.18) 31 (19.50) 18 (11.32)
DT Probs No Under 161 (73.18) 119 (73.91) 26 (16.15) 16 (9.94)
LR Probs Yes Under 180 (81.82) 142 (78.89) 21 (11.67) 17 (9.44)
NB Classs Yes Over 156 (70.91) 113 (72.44) 29 (18.59) 14 (8.97)
DT Probs Yes Over 166 (75.45) 122 (73.49) 29 (17.47) 15 (9.04)
LR Classs Yes Over 164 (74.55) 119 (72.56) 25 (15.24) 20 (12.20)
NB Probs Yes Over&Under 153 (69.55) 109 (71.24) 30 (19.61) 14 (9.15)
DT Probs Yes Over&Under 166 (75.45) 123 (74.10) 31 (18.67) 12 (7.23)
LR Probs No Over&Under 174 (79.09) 127 (72.99) 30 (17.24) 17 (9.77)
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Figure 3.3 Prediction results using different window sizes for the best struc-
ture-based LR classifier.

Structure-based classifiers outperform sequence-based classifiers

Results in Tables 3.1 and 3.2 indicate that the performance of PoInterS predictors based

on structure-based PPIRPs were superior than those based on sequence-based PPIRPs. Our

analysis of the predicted interface residues in several proteins suggests that sequence-based

methods tend to generate more false positive predictions than structure-based methods in large

non-interacting areas on the protein surface, misleading the process used to rank patches. This

is illustrated by the example shown in Figure 3.4. Based on this observation, we chose to use

structure-based PPIRPs in the rest of our experiments.

Evaluation of the performance of PoInterS predictors using two patch sizes

The results of experiments using the two patches sizes proposed in (92; 94; 90) on the

performance of PoInterS using a structure-based LR classifier are presented in Figure 3.5. These

results indicate that the overall performance of the predictor that used patches of size 1.91n0.55

was similar to those of the predictor that used patches of size 1.92n0.56. However, when only

the top-ranked patch was considered, the predictor that used patches of size 1.91n0.55 achieved

the best performance. These result agree with the findings of Jones and Murakami (90) using a

dataset composed of 256 examples. Therefore, most of the results presented in the next sections
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Figure 3.4 Example of prediction of interface residues using structure and sequence
based protein interface residue predictors. Correct predictions are shown
in green and white (TP and TN respectively) whereas incorrect predictions are
displayed in red and yellow (FP and FN respectively). Sequence-based predic-
tions are presented on the left and structure-based predictions are displayed on
the right. Predictions were performed on the metalloenzyme pyruvate: ferredoxin
oxidoreductase (PDB:1KEK, chain A).

were computed using patches of size 1.91n0.55.
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Figure 3.5 PoInterS prediction results using the structure-based LR classifier on
two patch sizes. These results were obtained using a window of size nine.

Scoring schemes based on estimated probabilities overcomes those based on the

predicted binary labels

We proposed four schemes to rank the patches using the results produced by interface

residues predictors: probs(p) uses the predicted probabilities that indicates whether the residue

is or not an interface whereas classs(p) uses the predicted binary labels. The schemes probDiss(p)

and classDiss(p) weight the probabilities and prediction labels according to the inverse of the

distances from each residue in the patch to the central residue of the patch. We evaluated the

effect that these ranking schemes produce on PoInterS predictors using structure-based LR

classifiers with windows of size nine and patches of size 1.91n0.55. The results, presented in
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Figure 3.6, indicate that the performance obtained using ranking schemes based on the proba-

bilities are superior to that of ranking schemes based on the binary classification labels. This

difference is specially large when only the top-ranked patches are considered. In addition, the

performance of the schemes that use weights are inferior to those that do not use weights when

only the top-ranked patches are considered. In light of these results, we concluded that the

ranking scheme that produced the best classification of interaction sites in this dataset was

probs(p).
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Figure 3.6 Prediction results for the structure-based LR classifier using four differ-
ent schemes to rank patches. The predictions were performed based on LR
PPIRP, using patches of size 1.91n0.55, and structural windows of size nine.

In summary, the results of the leave-one-protein-out cross-validation experiments indicate

that the best performance of a PoInterS classifier was achieved using a structure-based LR

protein-protein interface residues predictor trained using normalized and under sampled data

and windows of nine residues. The best ranking scheme for this dataset is based on the prob-

abilities generated by the LR PPIRP on patches of size 1.91n0.55. Some of these results were

validated in the next section using a blind test dataset.

3.4.2 Validation with the ZDOCK dataset

We used the ZDOCK dataset, composed of 299 proteins derived from the docking bench-

mark 3.0 (85), to compare predictors of interface patches based on SVM, LR, and SPPIDER

(155), a method to predict protein-protein interface residues. We also studied the relation-

ship between the performance of interface residues predictors and the performance of interface
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patches predictors. All the PPIRPs used in this section were trained with the cross validation

dataset and tested on the ZDOCK dataset.

As mentioned before, to train SVM predictors with thousand of instances in the leave-

one-protein-out cross validation experiments is very time consuming. Therefore, we did not

consider PoInterS predictors based on SVM PPIRPs in the cross validation experiments. Here,

we trained a new structure-based SVM predictor of interface residues using the entire cross

validation dataset and used it to generate two predictors of interface patches: One for patches

of size 1.91n0.55 and the other for patches of size 1.92n0.56.

We evaluated the performance of the interface patches predictors based on SVM and LR

PPIRPs using the ZDOCK dataset. The results of these experiments are presented in Figure

3.7, that also include, as a reference, the performances obtained with the LR-based PoInterS

predictors in the leave-one-protein-out experiments. The results indicate that interface patches

predictors based on the SVM PPIRP outperformed those based on the LR predictor on the

ZDOCK dataset. In addition, a comparison of the PoInterS predictors based on LR PPIRPs

indicates that the performance obtained from the ZDOCK dataset was lower than the same

on the cross validation dataset. This difference may be explained by the fact that around

90% of the dimers in the cross validation dataset are homo-dimers (i.e. the sequence identities

between the interacting proteins is ≥ 95%) whereas the proteins in ZDOCK are hetero-dimers

(i.e. sequence identities ≤ 22.81%).

Given that the complexes in the ZDOCK dataset are hetero-dimers whereas most of the pro-

teins in the cross validation dataset are homo-dimers, we evaluated the impact of the patches

ranking schemes in the performance of the PPIPPs using ZDOCK. The result of these evalua-

tions, shown in Figure 3.8, indicate that PPIPPs that use ProbDiss and ClassDisS to rank the

patches outperform those that use Probs and ClassS. These results differ from the obtained

in the leave-one-protein-out cross-validation experiment, suggesting that the distribution of

interface residues in the patches are different for homo-complexes and for hetero-complexes.

The modular nature of the PoInterS method allows to use the predictions generated by any
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Figure 3.7 Comparison of percentages of correct predictions using the ZDOCK and
the cross validation datasets. CV refers to the results of the leave-one-pro-
tein-out experiments in which the LR were trained and tested using the cross val-
idation dataset. ZDOCK refers to results obtained using structure-based LR and
SVM PPIRPs trained with the cross-validation dataset and tested on the ZDOCK
dataset. The PPIRPs were built using structural windows of size 9, and normaliz-
ing the data. Patches were ranked using the probabilities generated by the PPIRP.
Results are grouped into two sections corresponding to different patch sizes.
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Figure 3.8 Results of PoInterS predictions on the ZDOCK dataset using differ-
ent ranking schemes. These experiments were performed with normalized data,
structure-based PPIRPs using a window with nine residues, and patches of size
1.91n0.55.

PPIRP to predict interface patches. Therefore, we created several PPIRPs based on SPPIDER

(155) as an alternative to the structure-based PPIRPs that we defined before. SPPIDER was

chosen because its high performance reported in (155; 43; 11). SPPIDER is a consensus-

based method to predict interface residues that uses the results generated by 10 neural network

classifiers. The inputs to these neural networks are 19 attributes derived from the sequence and

the structure of the protein, and from evolutionary profiles. We trained the neural networks

of several SPPIDER models using ten partitions of the cross validation dataset defined in two

ways. The first definition divided the dataset in 10 non-overlapping parts, and each part was

used to train a neural network. The second definition divided the dataset in 10 partitions,
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and used the data of nine partitions to train a neural network (i.e. each sample in the dataset

was used to train nine neural networks). In addition, we trained some SPPIDER models using

our definition of interface residues for the cross validation dataset (based on loss of accessible

surface area), and other models with the definition of interface residues used by the authors of

SPPIDER to deal with changes in the conformation of a protein structure after complexation.

According to this definition, the sequence homologs of a query protein were aligned, and any

aligned residue labeled as interface in the query sequence or any of its homologs, was labeled

as an interface residue in the query protein4.

In this experiment, we used several PPIPPs based on our implementation of SPPIDER,

SVM, and LR, to evaluate the relationship between the performances of the PPIRPs and those

of their corresponding interface patches predictors. The results of this evaluation are presented

in Table 3.3. The rows in this table are sorted according to the overlap value. These results

indicate that the PoInterS predictors based on SVM and LR (with exception of the predictor

using a SVM model trained with unbalanced data) outperformed all the interface patches pre-

dictors based on a SPPIDER PPIRP. However, the main observation deduced from the results

presented in Table 3.3 is that, given the performance measures of the PPIRP, it is not completely

clear how to select which interface residues predictor will produce the best interface patches

predictor. For example, the predictor that achieves the highest overlap value was ranked sixth

according to accuracy; the predictor with the fourth highest precision value was ranked 11th

according to overlap; the predictor with the highest recall value was ranked third according to

overlap; and the classifier with the third highest correlation coefficient value was ranked sixth

according to overlap. We conclude that the selection of the interface residues classifier used to

predict interaction sites should be done using the overlap measure, not a performance measure

associated with the PPIRP. However, this is a minor inconvenience given that the method for

computing and ranking the patches is efficient.

4The interface residues of a protein and its sequence homologs were extracted from ProtInDB (http://
protindb.cs.iastate.edu), a data base of protein-protein interface that can compute interface residues from
sequence homologs sharing ≥ 96% of sequence similarity with the query protein.

http://protindb.cs.iastate.edu
http://protindb.cs.iastate.edu
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Table 3.3 Performances of the interface residues classifiers and their corresponding
interface patches predictors. “SPP†” refers to SPPIDER predictors trained
with 10 datasets generated by partitioning the CV dataset into 10 pieces (i.e.
each sample in CV appears in exactly one dataset). “SPP” denotes SPPIDER
classifiers trained with 10 datasets generated from 10-cross validation partitions
on the CV dataset (i.e. each sample of CV appears in nine training datasets).
“Train. balanced?” indicates whether the training dataset was balanced or not.
“Train. dimers?” and “Test dimers? ” indicate whether the interface residues in
the training and testing datasets, respectively, were extracted from dimers in the
query protein or from the interacting chains in complexes with sequence identity
≥ 96% with the query protein. “IR” refers to interface residues and “NIR” to
non-interface residues. “Overlap %” is the percentage of correct predictions for
the interface patches predictor. “Overlap Patch 1 %” is the percentage of correctly
predicted patches when only the top-ranked patch is considered. These experiment
were performed with patches of size 1.91n0.55 ranked with probDiss(p). Windows
of nine residues were used for the SVM and LR classifiers. The data is presented
according to the performance of the interface patches predictors.

IR
P

re
di

ct
or

T
ra

in
.

ba
la

nc
ed

?

T
ra

in
.

di
m

er
s?

T
es

t
di

m
er

s?

N
or

m
al

iz
ed

?

A
cc

ur
ac

y
%

P
re

ci
si

on
IR

%

R
ec

al
l
IR

%

P
re

ci
si

on
N

IR
%

R
ec

al
l
N

IR
%

C
C

%

O
ve

rl
ap

%

O
ve

rl
ap

P
at

ch
1

%
SVM X X X X 72.62 35.42 56.15 89.06 76.46 26.87 77.59 70.69
LR X X X X 71.20 32.92 56.09 88.93 74.42 24.55 74.25 72.07
LR X X X 66.83 28.17 61.10 88.60 67.59 21.39 73.24 67.58

SPP† X X 74.53 23.15 57.94 95.40 74.01 23.44 65.20 63.73
SPP X X X 69.85 30.16 48.63 87.50 74.37 18.86 64.86 59.38
SPP X X 75.06 24.08 58.28 95.51 74.69 24.46 64.53 59.16
SPP X X X X 70.94 30.52 46.18 87.44 76.27 18.61 64.21 65.10
SPP X X X 78.79 29.92 23.15 85.13 90.66 13.99 62.21 63.44
SPP X 85.41 27.75 32.36 93.05 89.71 20.51 61.49 59.34
SPP† X X X X 69.10 28.79 50.15 87.35 72.64 18.15 59.20 62.71
SPP† X X X 77.65 30.28 25.66 85.33 88.59 14.11 58.19 65.52
SVM X X X 45.17 18.98 71.32 85.71 39.60 7.12 45.48 44.12
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An evaluation of the performance of the support vector machine-based interface patches

predictor, denoted as PoInterS-SVM, and the best SPPIDER-based interface patches predictors

in terms of the overlap curve is presented in Figure 3.9. From this figure it is possible to

observe that a threshold value of 50% on overlap produced around 90% correct predictions

for PoInters-SVM and around 85% for the SPPIDER-based predictor, whereas a threshold

value of 90% produced around 40% and a 25% of correct predictions for PoInterS-SVM and

for the SPPIDER-based predictor respectively. This figure also indicates that about 20% of

the PoInters-SVM predictions were successful independently of the threshold value, so the

prediction of interaction sites for the proteins involved in these cases could be considered as

trivial for PoInterS-SVM.

Figure 3.9 Overlap curves for PoInterS-SVM and the best SPPIDER-based pre-
dictor of interface patches. Predictions were performed using windows of nine
residues and ranking patches of size 1.91n0.55 using ProbDiss(p).

3.4.3 Comparison with other interface patches predictors

We compared our final proposed predictor of interface patches, PoInterS-SVM, with SHARP 2

(132) and PPI-Pred (22), that are available as Web servers. The comparisons were performed

on the Capri dataset, composed of 24 proteins extracted from 19 targets in the first eight rounds

of CAPRI, as described in the methods section.
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3.4.3.1 PoInterS-SVM versus SHARP 2

SHARP 2 predicts interaction sites in a query protein by decomposing its surface into over-

lapping patches and ranking them using the arithmetic mean of a set of scaled parameters. Two

sets of parameters were suggested. The first (94) included solvation potentials, hydrophobicity,

accessible surface area, residue interface propensity, protrusion, and planarity. The second set of

parameters (90) was composed of solvation potentials, hydrophobicity, accessible surface area,

and residue interface propensity. The definition of patches is the same for SHARP 2 and PoInt-

erS, and patches of size 1.91n0.55, as suggested by Jones and Mukarami in (90), were used for

comparing both methods. The predictions of SHARP 2 were computed using the available Web

server. The performance measures used for the comparison were overlap, specificity, sensitivity,

the probability p of randomly finding a patch that satisfies the definition of success, and the

probability Prob of finding the i-th patch, where i corresponded to the first patch that satisfied

the definition of a correct prediction (e.g. Prob = 1 − (1 − p)2 when the first predicted patch

with overlap ≥ 70 % is ranked in the second position) or the patch with the highest overlap

when none of the three selected patches satisfied such definition. The two sets of parameters of

SHARP 2 were tested and the best performance in terms of overlap was achieved using the set

composed of four parameters. Detailed results of the comparison of the best SHARP 2 predictor

and PoInterS-SVM are shown in Table 3.4.

Results in Table 3.4 suggest that PoInterS-SVM outperformed SHARP 2 on the CAPRI

dataset. There were 11 correct predictions according to overlap for SHARP 2 and 20 for

PoInterS-SVM. A 65% of these correct predictions were obtained using the top-ranked patch

in PoInterS-SVM, versus a 36% in SHARP 2. In addition, 12 successful predictions using

PoInterS-SVM and four using SHARP 2 had Prob ≤ 0.17. Using the metrics proposed by

Bradford and Westhead in (22) to define successful predictions (i.e. specificity > 50 and sensi-

tivity > 20) four interaction sites were correctly predicted by SHARP 2 whereas PoInterS-SVM

correctly predicted five. All the PoInterS-SVM predictions had Prob ≤ 0.17 whereas all the

SHARP 2 predictions had Prob≤ 0.64, and one was ≤ 0.17.
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Table 3.4 Comparison of SHARP 2 and PoInterS-SVM . PoInterS-SVM ranked patches
of size 1.91n0.55 using probDiss(p). Overl, Spec and Sens refers to overlap, speci-
ficity, and sensitivity respectively. Patch refers to the first patch with overlap≥70%
or to the best among the three top ranked patches if their overlap < 70%. The
probability of randomly select a patch with overlap≥ 70% is denoted by p, and Prob
is the probability of randomly finding the patch specified in the column Patch.

SHARP 2 PoInterS-SVM

Target p Overl. Spec. Sens. Patch Prob Overl. Spec. Sens. Patch Prob
1A 0.16 36.36 12.12 30.77 2 0.30 72.73 24.24 61.54 1 0.16
1H 0.16 100.00 52.17 100.00 1 0.16 100.00 52.17 100.00 1 0.16
2A 0.08 100.00 11.54 100.00 3 0.22 83.33 9.62 83.33 1 0.08
2D 0.11 85.71 16.22 85.71 1 0.11 100.00 18.92 100.00 1 0.11
3A 0.10 71.43 21.74 71.43 3 0.27 92.86 28.26 92.86 1 0.10
3C 0.11 57.14 17.39 57.14 3 0.29 42.86 13.04 42.86 1 0.11
3H 0.07 100.00 23.68 90.00 1 0.07 100.00 23.68 90.00 1 0.07
3L 0.07 55.56 13.51 55.56 1 0.07 100.00 24.32 100.00 1 0.07
4A 0.09 40.91 15.25 39.13 3 0.24 68.18 25.42 65.22 3 0.24
7A 0.07 58.33 18.42 58.33 2 0.14 75.00 23.68 75.00 1 0.07
8A 0.14 87.50 34.15 60.87 2 0.26 75.00 29.27 52.17 1 0.14
8B 0.17 29.41 15.62 22.73 1 0.17 82.35 43.75 63.64 2 0.32
9A 0.15 100.00 63.89 56.10 2 0.28 82.61 52.78 46.34 1 0.15
10A 0.07 34.62 17.65 16.98 3 0.20 76.92 39.22 37.74 3 0.20
11A 0.17 72.22 44.83 50.00 1 0.17 100.00 62.07 69.23 2 0.32
11B 0.40 100.00 55.56 71.43 2 0.64 80.00 44.44 57.14 1 0.40
13F 0.15 64.29 22.50 60.00 3 0.38 85.71 30.00 80.00 1 0.15
14A 0.30 75.00 40.00 34.62 2 0.51 83.33 44.44 38.46 1 0.30
14B 0.20 57.69 34.09 23.08 2 0.36 80.77 47.73 32.31 2 0.36
18A 0.08 38.10 16.00 33.33 3 0.21 100.00 42.00 87.50 2 0.15
18C 0.10 95.65 64.71 68.75 3 0.26 100.00 67.65 71.88 2 0.18
19A 0.06 69.23 36.00 69.23 1 0.06 69.23 36.00 69.23 1 0.06
20A 0.08 31.03 20.93 20.00 3 0.21 65.52 44.19 42.22 3 0.21
20B 0.11 33.33 20.45 24.32 3 0.30 100.00 61.36 72.97 2 0.21
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An evaluation of both classifiers in terms of the overlap curves, presented in Figure 3.10,

indicates that PoInterS-SVM outperformed SHARP 2 for overlap threshold values grater than

30%.

Figure 3.10 Comparison of SHARP 2 and PoInterS-SVM using overlap curves. The
horizontal axis indicate different overlap percentage values whereas the vertical
axis shows the number of correct predictions achieved according to the overlap
percentage value.

PoInterS-SVM versus PPI-Pred

PoInterS-SVM and PPI-Pred (22) have several similarities and differences. Both meth-

ods use machine learning classifiers to rank every patch on the protein, and top-ranked non-

overlapping patches are returned as the predicted interaction sites. However, PPI-Pred uses a

SVM classifier of interface patches whereas PoInterS-SVM uses a SVM predictor of interface

residues; the ranking of PPI-Pred is directly produced by the SVM classifier whereas PoInterS

uses a ranking scheme derived from the prediction performed on each residue in every patch;

and the definitions of patches are different for both methods. Specifically, the SVM model used

by PPI-Pred was trained with an interacting patch and a non-interacting patch extracted from

each protein in a dataset of 180 proteins. The prediction generated by this SVM is used to rank
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every patch on a query protein. In addition, PPI-Pred defines a basic patch as a central atom

and the set of atoms included in a sphere centered in the central atom. This basic patch may be

extended when it forms a ring on the surface of the protein, or reduced to avoid the inclusion

of residues in different sides of the protein or when unconnected patches are formed inside the

sphere. Therefore, the patches of a protein may have different sizes, which complicates the

task of comparing PPI-Pred predictions with ours. Hence, the comparison for each protein was

performed using only the top-ranked patch generate by PPI-Pred and the top-ranked patch

produced by PoInterS-SVM. The patches of PoInterS-SVM were composed of the same num-

ber of residues that the top-ranked patch of PPI-Pred. PPI-Pred ’s predictions were computed

using the Web server. The performances of the predictions of PPI-Pred and PoInterS-SVM on

the ZDOCK dataset are shown in Table 3.5. These results indicate that PoInterS-SVM pro-

duced correct predictions for 12 proteins whereas PPI-Pred succeeded in three. Eleven of the

correct predictions of PoInterS-SVM and the four predictions of PPI-Pred had p ≤ 0.17, and

the additional correct prediction of PoInterS had p = 0.29. Hence, the number of interaction

site predictions performed by PoInterS-SVM was almost three times the number of predictions

of PPI-Pred on this dataset when only the first top ranked patch was used.

Using the definition of successful predictions proposed by the authors of PPI-Pred (22)

(i.e. specificity > 50% and sensitivity > 20%), four correct predictions were generated using

PoInterS-SVM and three using PPI-Pred. Three of the four predictions of PoInterS-SVM and

the three predictions of PPI-Pred had p ≤ 0.17. In addition, 10 of the predictions performed

with PPI-Pred produced zero values for specificity and sensitivity, whereas PoInterS-SVM pro-

duced only one. Therefore, when specificity and sensitivity were used as performance measures,

PoInterS-SVM results were at least as good as PPI-Pred for this dataset.

A comparison between both classifiers using the overlap curves, presented in Figure 3.11,

indicates that PoInterS-SVM outperformed PPI-Pred for the dataset extracted from CAPRI.
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Table 3.5 Comparison using the first patch predicted with PPI-Pred and the first
patch predicted with PoInterS-SVM . Patch size refers to the number of
residues in the top-ranked patch computed by PPI-Pred and used in PoInterS-SVM.
The probability of randomly selected a patch with overlap≥ 70% is denoted by
p. Overl, Spec and Sens refers to overlap, specificity, and sensitivity respectively.
Patches were ranked in PoInterS using probDiss(p).

PPI-Pred PoInterS-SVM

Target Patch size p Overl. Spec. Sens. Overl. Spec. Sens.
1A 25 0.09 0.00 0.00 0.00 63.64 28.00 53.85
1H 11 0.10 63.64 63.64 58.33 72.73 72.73 66.67
2A 24 0.04 0.00 0.00 0.00 0.00 0.00 0.00
2D 34 0.11 0.00 0.00 0.00 100.00 20.59 100.00
3A 39 0.08 0.00 0.00 0.00 92.86 33.33 92.86
3C 32 0.06 0.00 0.00 0.00 76.92 31.25 71.43
3H 25 0.05 44.44 16.00 40.00 100.00 36.00 90.00
3L 30 0.06 0.00 0.00 0.00 66.67 20.00 66.67
4A 44 0.05 0.00 0.00 0.00 57.14 27.27 52.17
7A 23 0.07 0.00 0.00 0.00 70.00 30.43 58.33
8A 42 0.17 0.00 0.00 0.00 75.00 28.57 52.17
8B 40 0.17 60.00 30.00 54.55 20.00 10.00 18.18
9A 34 0.17 86.36 55.88 46.34 81.82 52.94 43.90
10A 91 0.16 32.35 12.09 20.75 50.00 18.68 32.08
11A 16 0.07 0.00 0.00 0.00 53.85 43.75 26.92
11B 9 0.20 25.00 22.22 14.29 62.50 55.56 35.71
13F 43 0.16 42.86 13.95 40.00 85.71 27.91 80.00
14A 76 0.29 39.39 17.11 25.00 72.73 31.58 46.15
14B 50 0.18 58.62 34.00 26.15 34.48 20.00 15.38
18A 54 0.09 80.95 31.48 70.83 80.95 31.48 70.83
18C 19 0.05 100.00 84.21 50.00 18.75 15.79 9.38
19A 23 0.06 53.85 30.43 53.85 100.00 56.52 100.00
20A 35 0.06 48.00 34.29 26.67 4.00 2.86 2.22
20B 99 0.21 68.57 24.24 64.86 31.43 11.11 29.73
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Figure 3.11 Comparison of PPI-Pred and PoInterS-SVM using overlap curves. The
curves were generated using the predictions corresponding to the top-ranked patch
for each protein in the dataset.

3.4.4 Web server

PoInterS-SVM has been implemented as a web server, which is freely available at http://

pointers.cs.iastate.edu. The server accepts the PDB Id of the query protein or a file with

the structure of the protein, the name of protein chain, the size of the patch, the ranking

scheme to use, and the maximum allowed overlapping between patches as inputs, and produces

as output, a list of the PDB residue codes in each predicted interaction site and a graphical

representation of the predicted patches using Jmol(1). The server also allows batch submissions

of a list of PDB protein chains on which the user wants to obtain predictions of interface sites.

3.5 Conclusions

We presented PoInterS, a modular method for predicting protein-protein interaction sites

in unbound proteins based on the results produced by interface residues predictors. PoInterS

computes all the patches on the surface of a given unbound protein and rank them using the

results generated by interface residues predictors. Finally, a set of top-ranked patches with

overlap ≤ 30% is returned as the predicted interface patches.

http://pointers.cs.iastate.edu
http://pointers.cs.iastate.edu
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We conducted experiments to evaluate factors that affected the performance of the predictor

such as different machine learning prediction methods, patch sizes, structural and sequential

representation of each residue in the protein, sampling techniques on the training datasets,

normalization of the data, and different schemes to rank patches. As a consequence, we se-

lected a predictor of interaction sites, PoInterS-SVM, and implemented it as a Web application.

PoInterS-SVM, is based on a support vector machine model for prediction of interface residues

that was trained using a dataset of 220 non-homologous proteins. Every surface residue in

PoInterS-SVM is represented using the amino acid identity, secondary structure, crystallo-

graphic temperature factor and relative accessible surface area of the residue and its eight

nearest neighbors in the structure surface.

Experiments comparing the performance of PoInterS-SVM, SHARP 2 and PPI-Pred, show

that our proposed method for predicting protein-protein interface patches using predicted

protein-protein interface residues leads to improvements over SHARP 2 and PPI-Pred. In par-

ticular, using a dataset of 24 protein extracted from 19 targets of the first eight rounds of

CAPRI, PoInterS-SVM successfully predicted 71% of the interaction sites whereas SHARP 2

was successful on 46% when the three top-ranked patches were considered. When only the

top-ranked patch of each protein was considered, PoInterS-SVM correctly predicted 42% of

the interaction sites whereas PPI-Pred was successful for 13%. The validity of our approach to

predict interface patches using predicted interface residues is also supported by the results of an

evaluation of the performance of PoInterS-SVM computed on a blind dataset of 299 proteins

extracted from ZDOCK Benchmark 3.0, achieving a 76% of success in terms of overlap.

The modular nature of PoInterS allows the use of interface residue predictions from any

available method for ranking the patches and predicting the interaction sites. Because the

processes of constructing, ranking and selecting the patches in PoInterS are relatively fast, it is

possible to experiment with different patch sizes or conformations given the predicted interface

residues for proteins of interest . This feature is especially useful in light of the fact that it is

not easy to determine which residue predictor among a set of candidate predictors is likely to

produce a better interface patch predictor based simply on the estimated performance of the

interface residue predictors.
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Future work aims to improve the prediction of protein-protein interface residues classifiers

as a way to improve the prediction of interface patches, to create different schemes to construct

or aggregate patches, and to develop of applications of the PoInterS predictors in problems

such as prediction of conformational B-cell epitopes.

3.6 List of abbreviations

SVM - Support vector machine

NB - Naive Bayes

LR - Logistic regression

CV - Cross validation dataset

PoInterS - Method for prediction of interaction sites

PoInterS-SVM - Predictor of interaction sites based on a SVM interface residues classifier.

PPIRP - Protein-protein interface residues predictor.

PPIPP - Protein-protein interface patch predictor.
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CHAPTER 4. PREDICTING PROTEIN-PROTEIN INTERFACE

RESIDUES USING LOCAL SURFACE STRUCTURAL SIMILARITY

Paper originally published in BMC Bioinformatics, vol 13, 2012

Rafael A. Jordan, Yasser EL-Manzalawy, Drena Dobbs and Vasant Honavar

4.1 Abstract

Background. Identification of the residues in protein-protein interaction sites has a sig-

nificant impact in problems such as drug discovery. Motivated by the observation that the set

of interface residues of a protein tend to be conserved even among remote structural homologs,

we introduce PrISE, a family of local structural similarity-based computational methods for

predicting protein-protein interface residues.

Results. We present a novel representation of the surface residues of a protein in the form

of structural elements. Each structural element consists of a central residue and its surface

neighbors. The PrISE family of interface prediction methods use a representation of structural

elements that captures the atomic composition and accessible surface area of the residues that

make up each structural element. Each of the members of the PrISE methods identifies for

each structural element in the query protein, a collection of similar structural elements in

its repository of structural elements and weights them according to their similarity with the

structural element of the query protein. PrISEL relies on the similarity between structural

elements (i.e. local structural similarity). PrISEG relies on the similarity between protein

surfaces (i.e. general structural similarity). PrISEC , combines local structural similarity and

general structural similarity to predict interface residues. These predictors label the central

residue of a structural element in a query protein as an interface residue if a weighted majority of



www.manaraa.com

62

the structural elements that are similar to it are interface residues, and as a non-interface residue

otherwise. The results of our experiments using three representative benchmark datasets show

that the PrISEC outperforms PrISEL and PrISEG; and that PrISEC is highly competitive

with state-of-the-art structure-based methods for predicting protein-protein interface residues.

Our comparison of PrISEC with PredUs, a recently developed method for predicting interface

residues of a query protein based on the known interface residues of its (global) structural

homologs, shows that performance superior or comparable to that of PredUs can be obtained

using only local surface structural similarity. PrISEC is available as a Web server at http://

prise.cs.iastate.edu/

Conclusions. Local surface structural similarity based methods offer a simple, efficient,

and effective approach to predict protein-protein interface residues.

4.2 Background

Protein-protein interactions play a central role in many cellular functions. In the past

decade, significant efforts have been devoted to characterization as well as discovery of these

interactions both in silico and in vivo (65; 117; 109; 209; 118). Of particular interest is the

identification of the amino acid residues that participate in protein-protein interactions because

of its importance in elucidation of mechanisms that underly biological function and rational

drug design (among other applications) (56). However, experimental determination of interface

residues is expensive, labor intensive, and time consuming (53). Hence, there is an urgent need

for computational methods for reliably identifying from the sequence or structure of a query

protein, the subset of residues that are likely to be involved in the interaction of that protein

with one or more other proteins.

Several methods for predicting protein-protein interface residues have been proposed in the

literature (see the reviews in (213; 43; 11)). A variety of features of the target residue (and

often its sequence or structural neighbors) have been explored (143; 183) in combination with

machine learning techniques (54; 205; 22; 200; 36; 146; 155; 122; 172; 123; 133) or scoring

functions (94; 139; 163; 90; 136; 171) to construct predictors of interface residues. Of particular

interest are recent methods for protein interface prediction based on the structural similarity

http://prise.cs.iastate.edu/
http://prise.cs.iastate.edu/
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between a query protein and proteins with known structure. These methods are motivated

by observations that suggest that interaction sites tend to be conserved among structurally

similar proteins (125; 35; 182; 39; 69). As the number of experimentally determined complexes

in the Protein Data Bank (PDB) (12) increases, the likelihood of success of such an approach

to interface prediction can be expected to increase as well. Hence, there is growing interest

in structural similarity based approaches to protein-protein interface prediction. For example,

Konc and Janežič (106) and Carl et al. (26) have developed a method that utilizes a graph

based representation of protein surfaces to predict interface residues that exploits the higher

degree of conservation of topological and physico-chemical features among interaction sites as

compared to non-interaction sites of proteins. Zhang et al. (212) have introduced PredUs,

a new method that predicts interaction sites using counts of interface residues derived from

alignments between the structure of a query protein and the structures of a set of proteins that

are structurally similar to the query protein. More recently, PredUs has been updated (211) to

incorporate a support vector machine that uses accessible surface area of regions on the protein

surface and the counts of interface residues derived from the structural alignments to predict

interface residues.

A potential limitation of structural similarity based interface prediction methods is that they

are effective only to the extent that a set of proteins (with experimentally determined interface

residues) that are structurally similar to the query protein can be reliably identified. In light of

evidence that the degree of conservation of interfaces tends to be substantially higher than that

of non-interfaces (125) and hence that of whole protein structures, there is increasing interest in

methods for predicting interface residues based on experimentally determined interface residues

in proteins that are locally (as opposed to globally) similar in structure to the query protein

(107; 27).

Against this background, we introduce PrISE (Predictor of Interface Residues using Structural

Elements), a novel family of predictors of protein-protein interface residues based on local

structural similarity. The PrISE family of interface prediction methods utilizes a repository

of structural elements constructed from a dataset of proteins that are part of experimentally

determined protein complexes retrieved from PDB. A structural element is defined as a pro-
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tein surface residue surrounded by its neighbors on the protein surface. The PrISE methods

utilize a novel representation of each structural element that captures the distribution of the

constituent atoms and the solvent accessible surface areas of residues (calculated from the indi-

vidual proteins). The prediction of protein-protein interface residues using any of the PrISE

methods is based on the identification of a collection of structural elements in the repository

that are similar to the structural elements of a query protein. The PrISE predictors label

the central residue of each structural element in the query protein as an interface residue if a

weighted majority of the similar structural elements are interface residues and as a non-interface

residue otherwise. PrISEL relies on the similarity between structural elements to assign the

weights to each query structural element whereas PrISEG relies on the similarity between pro-

tein surfaces in terms of structural elements. PrISEC combines the local and global approaches

of PrISEL and PrISEG. We assessed the performance of the PrISE family of predictors us-

ing several benchmark datasets. The results of experiments show that PrISEC outperforms

PrISEL and PrISEG. The three PrISE family of predictors outperform two other local struc-

tural similarity based interface residue predictors (26; 27). PrISEC outperforms methods that

use diverse structural, evolutionary, and physico-chemical properties to perform prediction of

interface residues using machine learning and scoring functions, even in the absence of proteins

with similar structure. The performance of PrISEC is superior or comparable to that of PredUs

(212; 211), a novel method that predict interface residues using the known interface residues on

proteins with similar structure to a query protein. Unlike PredUs, that require the existence of

structural homologs to perform predictions, PrISEC is able to generate prediction for all the

proteins with known structure.

4.3 Methods

4.3.1 Structural elements and their representation

A structural element is defined by an amino acid residue on the protein surface (referred to as

a surface residue) and its neighboring surface residues. Thus, the number of structural elements

in a protein equals the number of its surface residues. An amino acid residue is considered a
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surface residue if its accessible surface area in the monomer is greater than zero. Two residues

are considered neighbors if the distance between the Van der Waals surface of an atom of one

residue and the Van der Waals surface of an atom of the other residue is ≤ 1.5 Å. Accessible

surface areas were computed using Naccess (83).

A structural element is represented using four features: (i) The name of the central residue

of the structural element; (ii) the accessible surface area of the central residue of the structural

element; (iii) the accessible surface area of the structural element (computed as the addition

of the accessible surface areas of its residues); and (iv) an histogram of atom nomenclatures

representing the atomic composition of the surface of the structural element. An histogram of

atom nomenclatures contains the count of the number of atoms on the surface of the structural

element for each atom nomenclature (e.g. number of α-carbons, number of β-carbons, etc.).

There are 36 atom nomenclatures (a list is presented in section one of the Appendix A), hence,

an histogram of atom nomenclatures has 36 bins. An atom is considered to be in the surface

of a protein if its accessible surface area is > 0 Å2. The four features that represent a struc-

tural element are used to define a similarity measure between structural elements that consider

structural and physico-chemical properties. The rationale behind this representation, is that

structural elements with similar accessible surface areas and centered on identical residues with

similar surface areas have similar structure. In addition, two structural elements with similar

atomic composition of the surface of the structural element (represented by the histogram of

atom nomenclatures) have similar physico-chemical properties.

4.3.2 Distance between histogram of atom nomenclatures

The distance between the histograms of atom nomenclatures of two structural elements

provides a measure of their physico-chemical similarity. The distance between two histograms

of atom nomenclatures x and y is computed using the city block metric:
∑36

i=1 |xi−yi|, where xi

and yi denote the number of atoms (corresponding to the ith nomenclature in the histograms) on

the surface of the two structural elements (e.g. number of α-carbons exposed to the solvent)1.

1An explanation of the process used to select the city block metric from a set of different metrics is presented
in the Appendix A.
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4.3.3 Repository of structural elements

A repository of structural elements stores all the structural elements extracted from a set

of proteins. To perform different experiments, we built two repositories from two different sets

of proteins. The first, called the ProtInDb repository, was built from the biological assemblies

stored in ProtInDb (99), a database of protein-protein interface residues, which in turn was

derived from protein complexes in PDB (12). This repository is composed of 21,289,060 struc-

tural elements extracted from 88,593 interacting chains (as of February 21, 2011). The second

repository, called the ProtInDB
⋂

PQS repository, is composed of the structural elements ex-

tracted from proteins that are common to both ProtInDb and the Protein Quaternary Structure

database (PQS ) (75). This repository contains 13,396,420 structural elements extracted from

55,974 interacting chains in 21,786 protein complexes. A protein chain is considered an inter-

acting chain if it contains at least five contact amino acid residues. An amino acid residue in

a protein chain is considered a contact amino acid if the Van der Waals surface of at least one

of its heavy atoms is no further than at most 0.5 Å from the Van der Waals surface of some

heavy atom(s) of an amino acid residue belonging to another chain.

4.3.4 Retrieving similar structural elements

The prediction of interface residues in a query protein is based on the existence of similar

structural elements for each structural element in the protein. The process of retrieval similar

structural elements from a repository of structural elements should satisfy two requirements:

It should be efficient and it should retrieve similar structural elements for every structural

element in the query protein. These requirements are satisfied using four constraints that every

every structural element qs retrieved from the repository and associated with a query structural

element qr should comply: (i) qr and qs must not be from the same protein complex; (ii) the

central residues r and s of the structural elements qr and qs respectively, must be identical;

(iii) the difference between the accessible surface areas of r and s should be ≤ 5% of the

maximum accessible surface area of residues identical to r ; and (iv) the differences between

the accessible surface areas of qr and qs must be ≤ 15% of the maximum estimated accessible
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surface area of any structural element centered on a residue identical to r. These constraints

were experimentally determined, as explained in the Appendix A.

4.3.5 PrISE algorithm

The PrISE algorithm is summarized in Figure 4.1. First, a query protein structure is

decomposed into a collection of structural elements. For each structural element in the query

protein, PrISE retrieves a collection of similar structural elements (referred as samples) from

the repository of structural elements. PrISE uses the collection of retrieved samples and

information derived from their associated proteins to predict whether the central residue of each

structural element is an interface residue. The information derived from the associated proteins

can be incorporated into our proposed method using three different approaches (Equations 1-3)

that result in three variants of the PrISE algorithm for predicting protein interface residues.

The first method, PrISEL, uses similarity between structural elements (i.e. local structural

similarity). The second method, PrISEG, utilizes a measure of similarity between protein

surfaces (i.e. general structural similarity). The last method, PrISEC , combines local and

general structural similarity. A detailed description of these approaches as well as the rationales

behind them are provided next.

Let S be a repository of structural elements (where each element is indexed by the protein

from which the structural element is derived and the surface residue that it represents). Let Q

be a query protein. Let S(Q) be the collection of structural elements of Q (recall that there are

as many structural elements in S(Q) as there are surface residues in Q). To predict whether

the central residue r(q) of a structural element q ∈ S(Q) is an interface residue, a collection Sq

of structural elements that are most similar to q is retrieved from the repository S based on the

distance between the histogram of atom nomenclatures q and that of each element in S 2 . In

the event of a tie, the sample with the lowest difference in accessible surface area between its

central residue and residue r(q) is chosen.
2Based on results of exploratory experiments, we found that 50, 200, and 500 similar structural elements are

adequate (respectively) for performing prediction using PrISEL, PrISEG, and PrISEC. See Figures 4 to 6
and the corresponding discussion in the Appendix A for details.
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Figure 4.1 Prediction of interface residues using surface structural similarity.
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For each structural element s in S , let π(s) denote the protein from which s was extracted.

Given a protein P and an arbitrary collection R of structural elements, we define the contri-

bution, cont(P, R), as simply the number of structural elements in R that are associated with

the protein P . For each q ∈ S(Q), the collection of structural elements of protein Q, and for

each structural element s ∈ Sq, we define the weights wG(s, q), wL(s, q) and wC(s, q) (used by

PrISEG, PrISEL, and PrISEC respectively) as follows:

wG(s, q) = cont(π(s), ZQ) (4.1)

where ZQ=
⋃

q∈S(Q)

Sq. Intuitively, the more similar the query protein Q containing the struc-

tural element q is to the protein from which the structural element s was derived, the greater

the influence of s to the prediction on q.

Given a structural element q∈ S(Q), let Re(q) be the set of surface residues of Q that

belong to q. Let N(q) be the set of structural elements associated with residues in Re(q). Let

Nq=
⋃

n∈N(q)

Sn (where Sn, the collection of structural elements that are most similar to n, is

retrieved from the repository S of structural elements), we define the weight for PrISEL as:

wL(s, q) = cont(π(s), Nq) (4.2)

Intuitively, the more similar the local surface patch of the structural element q is to a local

surface patch of the protein from which the structural element s was derived, the greater the

influence of s to the prediction on q.

For PrISEC ,

wC(s, q) = wG(s, q)× wL(s, q) (4.3)

Let S+(q) = {s ∈ Sq|r(s) is an interface residue} and S−(q) = {s ∈ Sq|r(s) is a non-interface residue}.

Thus, PrISEC combines the predictions of PrISEL and PrISEG. Because PrISEL and

PrISEG weight each sample based on different criteria, this allows PrISEC potentially to

outperform each of them by taking advantage of complementary methods.
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In the case of PrISEG, the weight of positive samples associated with structural element q

is defined as:

WG+(q) =
∑

s∈S+(q)

wG(s, q).

Similarly, the weight of negative samples associated with structural element q is defined as:

WG−(q) =
∑

s∈S
−
(q)

wG(s, q).

Finally, classification is performed by selecting a threshold3 on the probability that indicates

whether the central residue r(q) of the structural element q is likely to be an interface residue:

probG+(r(q)) =
WG+(q)

WG+(q) +WG−(q)

In the case of PrISEL, and PrISEC , the corresponding quantities WL+(q), WL−(q), and

probL+(r(q)) and WC+(q), WC−(q), and probC+(r(q)) are defined in terms of the corresponding

weights wL and wC (respectively).

4.3.6 Datasets

Four datasets were used to assess the performance of the PrISE family of interface predic-

tors. The first dataset, DS24Carl (26), is composed of 24 chains: 16 extracted from transient

complexes and eight extracted from complexes of different types. In this dataset, a residue is

defined as an interface residue if the distance of the Van der Waals surface of any of its heavy

atoms to a Van der Waals surface in any heavy atom of a different chain is ≤ 3 Å. The other

three datasets were defined in (212) from complexes used to evaluate protein docking software.

DS188 is composed of 188 proteins chains derived from the Docking Benchmark 3.0 (85) sharing

at most 40% sequence identity and containing 39,799 residues and 7,419 interacting residues.

The other two datasets, DS56bound and DS56unbound, are composed by 56 protein chains de-

rived from bound and unbound structures from the first 27 targets in CAPRI (88). DS56bound

and DS56unbound have a total of 12,123 and 12,173 residues, and 2,154 and 2,112 interacting

3See the Appendix A for a discussion on the choice of the threshold.
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residues respectively. For these three datasets, interface residues are defined as amino acids on

two different protein chains with at least a pair of heavy atoms separated by at most 5 Å. These

interfaces were computed from complexes extracted from PQS by the authors of (212).

4.3.7 Performance Evaluation

The reliability of a prediction may be evaluated using different performance measures (10).

We focused our evaluation on the following measures:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP refers to interface residues correctly predicted, FP to non-interface residues

predicted as interfaces, and FN to interface residues predicted as non-interfaces. Precision

evaluates the quality of the prediction in reference to the set of predicted interface residues,

whereas recall measures the quality of the prediction with respect to the set of actual interface

residues. When possible, the performance of different classifiers is evaluated by comparison of

the precision-recall curve of each classifier. These curves are generated by computing preci-

sion and recall using different threshold values on the probability of each residue to be part of

the interface. Therefore, these curves provide a more comprehensive evaluation than a pair of

precision and a recall values.

For sake of completeness, we computed the following measures:

F1 =
2× precision× recall

precision+ recall

Accuracy =
TP + TN

N

CC =
(TP × TN)− (FP × FN)

√

(TP + FN)× (TP + FP )× (TN + FP )× (TN + FN)
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The F1 score computes the harmonic mean between precision and recall. Accuracy measures

how well interface and non-interface residues are correctly predicted. CC refers to the Matthews

correlation coefficient. In addition, we use the area under the receiver operating characteristic

(AUC ROC). This measure computes the area under the curve generated by computing the

sensitivity and the false positive rate using different thresholds on the probabilities that indicates

whether a residue belongs to the interface.

4.4 Results and discussion

We compared the PrISE family of algorithms using the DS188, DS24Carl, DS56bound

and DS56unbound datasets. We also assessed the extent to which the quality of predictions is

impacted by the presence of structural elements derived from homologs of the query protein in

the repository of structural elements used to make the predictions. In addition, the performance

of PrISEC was assessed against the performance of several classifiers based on machine learning

methods, scoring functions, and local and global structural similarity on different datasets.

4.4.1 Comparison of PrISEL, PrISEG and PrISEC

Recall that PrISEL relies on the similarity between structural elements (i.e. local structural

similarity), PrISEG relies on the similarity between protein surfaces (i.e. general structural

similarity), and PrISEC combines local structural similarity and general structural similarity

to predict interface residues. The performance of these three predictors were compared using

the DS188 dataset. For this experiment, samples were extracted from the ProtInDb repository.

In addition, samples extracted from proteins sharing more than 95% of sequence identity with

the query protein and belonging to the same species were excluded from the prediction process

to avoid overestimation on the predictions. To simulate a random prediction, the interface/non-

interface labels associated with the central residue in each sample in the repository were ran-

domly shuffled. The results of this experiment are presented in Figure 4.2 as precision-recall

curves. These results indicate that PrISEL, PrISEG, and PrISEC outperform the random

predictor. Furthermore, PrISEC achieves similar or better performance than PrISEG whereas

PrISEG predictions are superior to those of PrISEL. Similar conclusions are supported by
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experiments using the DS24Carl, DS56bound and DS56unbound datasets4. As a consequence,

PrISEC was selected to perform the experiments presented in the next subsections.

Figure 4.2 Comparative performances of PrISEL, PrISEG, PrISEC , and randomly
generated predictions on the DS188 dataset.

4.4.2 Impact of homologs of the query protein on the quality of predictions

We assess the extent to which the predictions are impacted by the presence of structural

elements derived from sequence homologs of the query protein. The first experiment excludes

samples derived from proteins belonging to the same species that share ≥ 95% of sequence

identity with the query protein (called homologs from the same species). The second experiment

excludes samples from all the proteins that share ≥ 95% of sequence identity with the query

protein (referred to as homologs).

Figure 4.3 compares the two methods for excluding homologs with a setup in which only

the samples derived from proteins with the same PDB ID as the query proteins are excluded5.

4See section four of the Appendix A, that also includes an example of the relationship between the scores of
the predictors in the PrISE family.

5Additional results using DS24Carl, DS56bound and DS56unbound are presented in section five of the Ap-
pendix A.
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As seen from Figure 4.3, the prediction performance is better when sequence homologs of the

query protein are not excluded from the set of proteins used to generate the repository used for

making the predictions. The best performance is achieved by excluding the proteins with the

same PDB ID as those of the query proteins.

Figure 4.3 Comparison of schemes for filtering out similar proteins from the pre-
diction process. This experiment was performed using PrISEC with the DS188
dataset.

4.4.3 Comparison with two prediction methods based on geometric-conserved lo-

cal surfaces

We compared the three predictors from the PrISE family with the predictors proposed

by Carl et al. in (26; 27). These methods rely on conservation of the geometry and the

physico-chemical properties of surface patches to predict interfaces. In (26), the conserved

regions were extracted from proteins with similar structures. In (27), similar performance was

achieved using conserved regions extracted using local structural alignments. This comparison

was performed using the DS24Carl dataset composed of 24 proteins and generated in (27). In

the case of PrISE family of methods, samples were retrieved from the ProtInDb repository.
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Samples extracted from proteins sharing more than 95% of sequence identity with the query

protein and belonging to the same species were not used in the prediction process. The results

of the experiment, presented in Table 4.1, indicate that each of the three predictors from the

PrISE family outperforms the predictors described in (26; 27). The differences in performances

may be explained by the differences in the prediction techniques. In particular, PrISE family

of predictors, unlike those of Carl et al., exploit the interface / non-interface labels associated

with surface patches that share structural similarity with the surface neighborhood of each

surface residue of the query protein.

Table 4.1 Performance of different methods on the DS24Carl dataset. Performance
measures are computed as the average on the set of 24 proteins. Precision and recall
values for Carl08 and Carl10 were taken from (26) and (27) respectively.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Carl08 31.5 35.3 33.3 - - -
Carl10 32.0 34.0 33.0 - - -
PrISEL 45.1 56.2 50.0 69.1 27.1 70.5
PrISEG 53.9 58.7 56.2 75.1 36.8 75.6
PrISEC 58.3 58.3 58.3 77.5 40.6 77.1

Results of a similar experiment excluding samples extracted from homologs of the query

proteins, as well as results of experiments using the ProtInDb
⋂

PQS repository, are presented

in section six of the Appendix A.

4.4.4 Comparison with a prediction method based on protein structural similarity

We compared PrISEC with PredUs (212; 211), a method that relies on protein structural

similarity, using the DS188, DS56bound and DS56unbound datasets. PredUs is based on the

idea that interaction sites are conserved among proteins that are structurally similar to each

other. PredUs computes a structural alignment of the query protein with every protein in a

set of proteins with known interface residues. The alignments are used to extract a contact

frequency map which indicates for each residue in the query protein, the number of interface

residues that are structurally aligned with it. The contact frequency map is then used to predict

whether each residue on the query protein is an interface residue. In (212), the prediction was

performed using a logistic regression function that receives as inputs the counts contained in
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the contact frequency maps. In (211), the logistic regression function was replaced by a support

vector machine (SVM) classifier that uses accessible surface areas and the counts contained in

the contact frequency maps to perform prediction.

In order to perform a fair comparison between PrISE and PredUs, the structural elements

used by PrISE and the structural neighbors used by PredUs were extracted from the same

dataset of proteins. This dataset corresponds to the subset of proteins that are common to

both ProtInDb and PQS which ensures the largest overlap between the proteins used by PredUs

(which relies on the structural neighbors extracted from PDB and PQS) and PrISE (which

relies on the proteins extracted from biological assemblies in PDB and deposited in ProtInDb).

This resulting dataset, used to create the ProtInDB
⋂

PQS repository, includes 55,974 protein

chains derived from 21,786 protein complexes. PredUs predictions were obtained from the

available web server (211). This server allows us to choose the set of structural neighbors to be

considered in the prediction process. Using this feature, we were able to exclude from the sets

of structural neighbors those proteins that were not in the intersection of ProtInDb and PQS

as well as homologs or homologs from the same species.

A first comparison of the PrISE family of predictors and PredUs was carried out using

the DS188 dataset. However, since the SVM used by PredUs was trained using this dataset

(211), it is likely that the estimated performance of PredUs in this case is overly optimistic,

resulting in an unfair comparison with PrISE. We found that in 7 of 188 cases (corresponding

to the PDB Ids and chains 1ghq-A, 1gp2-G, 1t6b-X, 1wq1-G, 1xd3-B, 1z0k-B, and 2ajf-A)

PredUs failed to find structural neighbors, and hence failed to predict interfaces. In contrast,

the PrISE predictors found the structural elements needed to produce predictions for the 188

cases. Predictions including these seven cases are labeled as PrISEC 188 in Figure 4.4, whereas

predictions of PrISEC and PredUs considering the set of 181 proteins are labeled with the suffix

181. The performances of PrISEC in the two cases are similar. PredUs generally outperforms

PrISEC , the best performing predictor from thePrISE family. This result is not surprising

given that the SVM used by PredU s was trained on this dataset whereas PrISE did not have

this advantage.
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Figure 4.4 Comparison of PredUs and PrISEC using the dataset DS188, derived
from the docking benchmark 3.0. (A) performance of predictions from which
homologs from the same species were not used to compute the structural neighbors
and the samples used in PredUs and PrISE respectively. (B) performance of
predictions that did not consider homologs. Both images show results for the 181
proteins that were predicted by PredUs and PrISEC and for the 188 proteins
predicted by PrISEC .

A second comparison of PrISEC and PredUs was performed using the DS56bound dataset.

PrISEC and PredUs generated predictions for all the proteins in this dataset. The precision-

recall curves presented in Figure 4.5 show that when homologs from the same species are

excluded from the collection of similar structures, PrISEC outperforms PredUs, but when

homologs are excluded regardless of the species, the performances of PrISEC and PredUs

are comparable. These results indicate that the use of local surface structural similarity is a

competitive alternative to the use of protein structural similarity for the problem of predicting

protein-protein interface residues.

An evaluation considering additional performance measures is presented in Table 4.2. The

data in this table indicates that PrISEC outperforms PredUs in terms of F1, correlation co-

efficient, or area under the ROC. The values for precision, recall, F1, Accuracy and CC were

computed using the default cutoff values for PrISEC and PredUs.
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Table 4.2 Evaluation of PrISEC and PredUs on DS56bound using different per-
formance measures. The table is divided into two sections depending on which
proteins are excluded from the set of similar structures (First column).

Filter out Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Homologs from PredUs 44.3 39.8 41.9 80.4 30.2 75.1
the same species PrISEC 46.1 45.4 45.7 80.9 34.1 77.6

Homologs PredUs 44.5 38.5 41.3 80.6 29.8 74.9
PrISEC 43.6 42.4 43.0 80.0 30.9 76.3
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Figure 4.5 Comparison of PrISEC and PredUs using the dataset DS56bound, de-
rived from CAPRI. The results in (A) correspond to predictions in which ho-
mologs from the same species were excluded from the collection of samples and the
set of structural neighbors. The results in (B) were obtained excluding homologs
from the sets of similar structures.

A final comparison between PrISEC and PredUs was performed using the DS56unbound

dataset. Three out of the 56 proteins (corresponding to the PDB IDs-chains 1ken-H, 1ken-L,

and 1ohz-B) were not processed by PredUs because no structural neighbors were found. Figure

4.6 shows the precision-recall curves of PrISEC and PredUs on the 53 cases covered by PredUs,

as well as the performance of PrISEC when all the 56 proteins are considered. A comparison

of both predictors using the set of 53 proteins and excluding homologs from the same species,

indicates that PrISEC outperforms PredUs for precision values > 0.4. On the other hand, when

homologs are excluded, the performance of PredUs is better than the performance of PrISEC

for precision values ≥ 0.3. Finally, the performance of PrISEC computed on 56 proteins is,

surprisingly, slightly better than the performance computed on 53 proteins. This suggests that

idea that local structural similarity based interface prediction methods can be effective even in

the absence of globally similar structures in the repository used for making the predictions.

An evaluation of PrISEC and PredUs using additional performance measures is presented

in Table 4.3. PrISEC outperforms PredUs in terms of F1, CC and AUC when homologs from
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Figure 4.6 Comparison of PrISEC and PredUs using the DS56unbound dataset ,
derived from CAPRI. (A) shows the performance achieved after removing ho-
mologs from the same species from the set of similar structures in PredUs and
PrISEC . (B) shows the performances when homologs are excluded. The suffixes
53 and 56 indicate the number of proteins that were used in the experiment.

the same species are excluded from the set of similar structures. When homologs are excluded,

PredUs outperforms PrISEC on the set of 53 proteins predicted by PredUs.

4.4.5 Comparison with other prediction methods

We compared the performances of PrISEC , Promate (139), PINUP(119), Cons-PPISP (31),

and Meta-PPISP (158) using all the proteins in the DS56bound and DS56unbound datasets.

The choice of the predictors used in this comparison was based on the results of a comparative

study in which they were reported to achieve the best performance among the six different

classifiers on two different datasets (213). Promate uses a scoring function based on features

describing evolutionary conservation, chemical character of the atoms, secondary structures,

distributions of atoms and amino acids, and distribution of b-factors. Cons-PPISP’s predictions

are based on a consensus between different artificial neural networks trained on conservation

sequence profiles and solvent accessibilities. PINUP uses an empirical scoring function based

on side chain energy scores, interface propensity and residue conservation. Meta-PPISP uses

linear regression on the scores produced by Cons-PPISP, Promate and PINUP.
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Table 4.3 Evaluation of PrISEC and PredUs on DS56unbound using different per-
formance measures.

Filter out Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Homologs from PredUs 53 43.2 37.2 39.9 81.8 29.4 73.6
the same species PrISEC 53 42.3 42.1 42.2 81.2 31.0 74.8

PrISEC 56 43.7 44.0 43.8 81.2 32.6 75.5
Homologs PredUs 53 42.6 36.8 39.5 81.6 28.8 73.5

PrISEC 53 38.8 37.9 38.4 80.1 26.5 72.9
PrISEC 56 40.5 40.0 40.2 80.2 28.4 73.7
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In the experiments presented in this subsection, we considered the performance of two

PrISEC classifiers according to which proteins were filtered out from the process of extraction

of samples: homologs from the same species as the query protein and homologs regardless

of the species. The scores used to generate the precision-recall curves of Promate, PINUP,

Cons-PPISP and Meta-PPISP were computed using Meta-PPISP’s web server.

The precision-recall curves corresponding to the evaluation of the classifiers on the DS56bound

and DS56Unbound datasets are shown in Figure 4.7. On both the datasets, PrISEC predictors

outperform Meta-PPISP for precision values > 0.35 and achieve performance comparable to

that of Meta-PPISP for precision values ≤ 0.35. Furthermore, PRISEC outperform Promate,

PINUP, and Cons-PPISP over the entire range of precision and recall values.

Figure 4.7 Performance of different classifiers evaluated on the DS56bound (A) and
the DS56unbound (B) datasets. For the PrISE classifiers, “spe.” and “hom.”
show predictions in which samples extracted from homologs from the same specie
and homologs, respectively, has been excluded from the prediction process.

An evaluation considering additional performance measures is presented in Table 4.4. All

the performance measures, with exception of AUC ROC, were computed using threshold values

of 0.56, 0.28, 0.41, 0.34, and 0.34 on the scores generated by Promate, PINUP, Cons-PPISP,

Meta-PPISP, and PrISEC respectively. These threshold values correspond to the default values
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defined in the Meta-PPISP and PrISEC web servers. The results show that the PrISEC

predictors outperform the other predictors on both datasets in terms of F1, correlation coefficient

and area under the ROC.

The results of a experiment using 187 proteins from the DS188 dataset is presented in Figure

4.8. Protein chain 2vis-C was excluded from the experiment given that Promate could not gen-

erate a prediction. When homologs from the same species are excluded, PrISEC outperforms

the other predictors except Meta-PPISP. PrISEC outperforms Meta-PPISP for precision values

> 0.4 and achieves comparable performance to that of Meta-PPISP for precision values ≤ 0.4.

When homologs are excluded, the performance of PrISEC is superior that the performance of

PINUP and Promate. PrISEC outperforms Meta-PPISP and Cons-PPISP for precision values

> 0.5, and is outperformed by Meta-PPISP for precision values ≤ 0.45.

Figure 4.8 Precision-recall curves of different classifiers evaluated on 187 proteins
from the DS188 dataset. For the PrISE classifiers, “spe.” and “hom.” show
predictions in which homologs from the same species and homologs, respectively,
has been excluded from the repository of structural elements.

An evaluation using different performance measures is presented in Table 4.5. According to

this table, the performance of both PrISE predictors is superior that the performance of the
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Table 4.4 Evaluation on the datasets DS56bound and DS56unbound. “PrISEC spe.”
refers to the performance computed after filtering out from the repository samples
extracted from homologs from the same species. “PrISEC hom.” indicates that
samples extracted from homologs were not considered in the prediction process.

Dataset Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Promate 31.9 27.3 29.4 76.7 15.6 63.3
PINUP 37.3 31.9 34.4 78.4 21.7 63.7

DS56bound Cons-PPISP 39.8 36.1 37.9 78.9 25.2 72.6
Meta-PPISP 43.3 25.8 32.3 80.8 22.9 74.4
PrISEC spe. 46.1 45.4 45.7 80.9 34.1 77.6
PrISEC hom. 43.6 42.4 43.0 80.0 30.9 76.3

Promate 28.7 27.3 28.0 76.6 14.0 62.7
PINUP 30.4 30.1 30.2 76.9 16.4 60.0

Ds56unbound Cons-PPISP 37.4 34.5 35.9 79.5 23.8 71.2
Meta-PPISP 38.9 24.0 29.7 81.1 20.2 71.5
PrISEC spe. 43.7 44.0 43.8 81.2 32.6 75.5
PrISEC hom. 40.5 40.0 40.2 80.2 28.4 73.7
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other classifiers in terms of F1 and CC. Furthermore, when homologs from the same species are

excluded, PrISEC outperforms the other classifiers in terms of AUC.

Table 4.5 Evaluation on 187 proteins from DS188. “PrISEC spe.” refers to the perfor-
mance computed after excluding from the prediction process samples extracted from
homologs of the same species that the query proteins. “PrISEC hom.” indicates
that samples extracted from homologs were filtered out from the repository.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Promate 36.5 30.3 33.1 77.1 19.5 67.7
PINUP 40.7 34.7 37.5 78.3 24.6 66.0

Cons-PPISP 46.5 30.6 36.9 80.4 26.7 73.2
Meta-PPISP 49.0 26.7 34.6 81.1 26.2 74.6
PrISEC spe. 48.0 43.2 45.5 80.6 33.8 77.2
PrISEC hom. 43.2 38.1 40.5 79.0 27.9 74.2

4.4.6 Prediction performances in the absence of similar proteins

To evaluate the extent to which the performances of PrISEC and PredUs depend on the

degree of homology between the query proteins and the proteins used to extract samples or

structural neighbors, we compare the results obtained using three different sequence homology

cutoffs: 95%, 50% and 30%. The results, shown in Figure 4.9, indicate that PredUs is more sen-

sitive than PrISEC to the lack of similar proteins in the sets used to extract similar structures.

The figure also shows that the performance of PrISEC is competitive with that of Meta-PPISP

even when the repository used by PrISEC is composed by proteins sharing < 30% of sequence

identity with the query proteins.

4.5 Conclusions

We have shown that it is possible to reliably predict protein-protein interface residues using

only local surface structural similarity with proteins with known interfaces.

The experiments comparing the performance of the PriSE family of predictors with the

structural similarity based interface predictors of Carl et al. (26; 27) show that the use of inter-

face / non interface labels of residues in structurally similar surface patches leads to improved

predictions by PrISE. This observation is also supported by the results obtained using Pre-
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Figure 4.9 Performance computed in absence of similar proteins at different sim-
ilarity levels. Figures (A) and (B) show the precision recall curves computed
after excluding from the sets of similar structures homologs (without regarding the
species) sharing ≥ 95% of sequence identity with the query proteins. Similarly,
figures (C) and (D) show the performances after excluding proteins sharing ≥50%
sequence identity, and (E) and (F) display the results after filtering out proteins
with sequence identity ≥ 30%. The precision-recall curves corresponding to the
DS56bound dataset are shown at (A), (C), and (E), and the results computed us-
ing the DS56Unbound dataset are labeled as (B), (D), and (F). Figures (E) and
(F) were computed using 55 and 52 proteins respectively given that PredUs could
not find structural elements for the protein chain 1ynt-L.
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dUs, that implicitly exploits information about non-interface residues reflected in the contacting

frequencies of interface residues.

Surface structural similarity based methods for interface residue prediction may use local

similarity, overall similarity, or a combination of both. PrISEL, which relies on the similarity

between structural elements (i.e. local structural similarity) outperforms random prediction;

PrISEG which relies on the similarity between protein surfaces (i.e. general structural simi-

larity) outperforms PrISEL. This result may not be surprising in light of the influence that

regions outside the immediate local environment have on the conformation of protein com-

plexes. However, our results show that the best predictions are achieved by PrISEC , using a

combination of local and overall surface similarity.

Our results indicate that, in general, PrISEC outperforms several state of the art predictors

such as Promate, PINUP, Cons-PPISP, and Meta-PPISP. Blind comparisons of PrISEC and

PredUs using the same proteins to extract samples and structural neighbors respectively, indi-

cate that PrISEC achieves performance that is superior to or comparable with that of PredUs.

Furthermore, PrISEC is more robust that PredUs at low levels of homology between the query

proteins and proteins in the sets used to extract similar structures, while remains competitive

with Meta-PPISP.

The interface residue prediction methods such as PrISE that use only local surface struc-

tural similarity have an advantage relative to methods that rely on global structural similarity:

The former can produce predictions whereas the latter cannot in the absence of protein with

structures that are sufficiently similar to the structure of the query protein.

Another advantage of the PrISE family of predictors is that the information needed to com-

pute similar structural elements (i.e. residues in the structural elements, accessible surface area

of these residues and their histogram of atom nomenclatures) can be obtained in a reasonable

amount of time. The time required for retrieving the samples associated with a query protein

from a repository of 21,289,060 structural elements extracted from 88,593 protein chains is in

average 90 seconds using a personal computer (Intel Core2 Duo CPU at 2.40GHz, 4MB of RAM

and a hard disk of 232 GB).

We conclude that methods based on local surface structural similarity are a simple yet
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effective approach to the problem of prediction of protein-protein interface residues.
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CHAPTER 5. CONCLUSIONS

The work presented in this thesis focuses on the development of tools and methods for

improving the prediction of protein-protein interaction sites. Advancements in prediction of

protein-protein interaction sites will lead to advances in problems such as prediction and val-

idation of protein function, prediction of protein quaternary structures (i.e. protein docking),

prediction and validation of protein-protein interactions and protein-protein interaction net-

works, identification of hot-spot residues, prediction of epitopes, and drug design.

We introduced ProtInDb, a database of protein-protein interface residues that allows users

to visualize the interaction sites in protein structures deposited in the PDB, and that assists

users in the creation of representative datasets that simplify the processes used for training,

testing, and comparing predictors of interface residues. The format of the data in these datasets

allows users to efficiently store and extract the fundamental information required to identify

interface residues as well as data about the solvent accessibility and the structural neighborhood

of each amino acid residue of proteins of interest. ProtInDb also allows users to download a

copy of the basic information of all the interacting proteins in the PDB, which can be used

to perform comprehensive studies involving interactions between proteins. Such information

includes the protein sequence (derived from structural data), mappings between the position of

each residue in the sequence and in the structure, and flags indicating whether each residue in

a protein is or is not an interface and/or surface residue. ProtInDb supports three definitions

of interface residues, and allows users to define threshold values that determine whether a

residue is or is not an interface residue and whether a residue is or is not on the surface of a

protein subunit. ProtInDb also allows users to select which type of structure should be used to

determine the interaction sites: Asymmetric units, derived directly from experiments performed

to determine the protein structures, or biological assemblies, representing the structure that has
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been shown or is believed to be biologically functional. ProtInDb has been used to construct

representative datasets utilized to train and test diverse predictors of interaction sites, and to

build a benchmarking dataset of bound-unbound conformational B-cell epitopes. ProtInDb also

provides the data required by several predictors of interface residues based on similarity between

proteins (i.e. PS-HomPPI and NPS-HomPPI (202), and PrISE (98)) that benefit from using

the largest amount of information involving interaction sites. ProtInDb is accessible at http://

protindb.cs.iastate.edu.

We proposed PoInterS, a method to predict interface patches based on the outcomes pro-

duced by predictors of interface residues. Prediction of interface patches allows users to focus

their experiments into specific sites on the surface of the protein, which can generate significant

savings in time and resources. PoInterS decomposes the surface of a protein into a series of

patches, ranks them using a scoring function based on the probabilities or the interface/non-

interface labels assigned to every surface residue by predictors of interface residues, and returns

the three patches that are the most likely to belong to the interaction sites of the given protein.

Based on the PoInterS method we implemented PoInterS-SVM, a predictor of protein-protein

interface patches that uses the results generated by a support vector machine predictor of inter-

face residues. Our results indicate that PoInterS-SVM outperforms SHARP 2 and PPI-Pred,

two state-of-the-art predictors of interface patches. The modular nature of the method, based

on the idea that the outcomes generated by any predictor of interface residues can be used to

predict interaction patches, and the experimental results supporting the success of the method

in predicting interaction sites, indicate that the creation of improved predictors of interface

residues will result in more successful predictors of interface patches. PoInterS-SVM has been

implemented as a Web application available at http://pointers.cs.iastate.edu

We introduced PrISE (98), a method for predicting protein-protein interface residues based

on the similarity of small protein regions called structural elements A structural element is

composed of a central residue and its closest residues in a protein structure, and is represented

using data extracted from the atomic composition and the area accessible to the solvent of its

constituent residues. This representation allowed us to create an efficient method to search

and retrieve from a large database of structural elements a set of similar elements to those of

http://protindb.cs.iastate.edu
http://protindb.cs.iastate.edu
http://pointers.cs.iastate.edu
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a query protein. Each similar structural element is weighted using the idea of contribution

of a protein to a set of structural elements, that counts the number of structural elements in

the protein that are similar to structural elements in the set. The set of weighted structural

elements are used to compute a final score that indicates whether the central residue of every

structural element in the query protein is or is not an interface residue. We created predictors

of interface residues based on the similarity between proteins (PrISEG), the similarity between

protein regions (PrISEL) or a combination of both (PrISEC). Our results indicate that

PrISEC outperforms PrISEG and that PrISEG outperforms PrISEL. Comparisons using

several datasets show that PrISEC outperforms a method based on the similarity between

protein regions, and achieves a performance that is superior or comparable to that of a state-

of-the-art predictor based on the similarity between protein structures (PredUs), and a meta-

predictor (meta-PPISP) of protein-protein interface residues that was selected given its high

performance in several experiments presented in the literature. PrISEC is accessible via Web

server at the URL http://prise.cs.iastate.edu

The results of this research work can facilitate the development of experiments based on or

related to protein-protein interface residues. Biochemists and molecular biologists can use the

predictions generated by PoInterS and PrISE as a guide to performing in vitro or in vivo ex-

periments oriented to find hot spot residues, to gain a better understanding of the mechanisms

involved in protein-protein interactions, and to develop new therapeutic drugs. Bioinformati-

cians can benefit from the tools provided by ProtInDb to visualize protein-protein interface

residues and to create representative datasets of interface residues. The ideas behind PoInterS

and PrISE, as well as their predictions, can also be applied to problems such as prediction

of interactions between diverse macromolecules, prediction of protein function, prediction and

validation of interactions between proteins, molecular docking, and in-silico design of new drugs.

http://prise.cs.iastate.edu
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5.1 Future work

5.1.1 Extending ProtInDb

Two changes would allow ProtInDb to be useful to a larger number of scientists. ProtInDb

could be extended to include information of interaction sites between proteins and DNA, RNA

and small ligands. This would extend the applicability of ProtInDb to different problems con-

cerning interaction between different macromolecules. In addition, including structural infor-

mation of non-interacting proteins (i.e. protein complexes composed of only one subunit) in

ProtInDb would allow the generation of datasets of unbound proteins. This could facilitate the

development of studies such as the evaluation of conformational changes in molecular structures

after formation of complexes, and to carry out more comprehensive evaluations (e.g. assessing

the performance of predictors of interaction sites on bound and unbound proteins).

5.1.2 Prediction of interface residues between different macro-molecules

Although PrISE and PoInterS methods were developed to predict protein-protein inter-

action sites, they could be extended for predicting protein-RNA (157), protein-DNA (45) and

protein-small ligands (112) interaction sites.

5.1.3 Using PrISE and PoInterS to assist biological experiments

Though the performance evaluations of PrISE and PoInterS indicate their effectivity in

predicting interaction sites, it would be interesting to use them to assist scientist in in-vitro

or in-vivo experiments (e.g. in tasks such as selection of target residues for alanine-scanning

mutagenesis experiments oriented to detect hot-spot residues, or the prediction or validation

of interactions in protein-protein interaction networks). In addition to the potential benefits of

using the predictions generated by our methods, this would allow us to gain a better under-

standing of their advantages and limitations, which will result in improvements in the reliability

of their predictions, and to explore alternative applications of our methods.
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5.1.4 Creation of more sophisticated methods to retrieve similar structural ele-

ments in PrISE

The method used by PrISE to retrieve similar structural elements is based on a measure of

the differences in the atomic composition and the accessible surface areas of the query structural

element and another element in the repository of structural elements. Despite this method

proved to be effective and efficient, it ignores some physico-chemical properties and relationships

between the atoms or residues in a structural element that could contribute to retrieve a most

suitable set of similar structural elements. For example, the selection of a subset of the atoms

included the histogram of atom nomenclatures or the use of weights associated with each atom

in the histogram (e.g. according to the relative accessible surface area or the average charge of

the atom and its neighbors), or the consideration of topological relationship between functional

groups of residues (167; 107), could lead into a new representation of structural elements that

produces a more accurate prediction of interaction sites.

5.1.5 Partner-specific versions of PrISE and PoInterS

PrISE and PoInterS are non-partner specific prediction methods, in the sense that they

predict interface residues and interaction sites for a query protein without considering any in-

formation of its specific interacting protein partner(s). However, applications such as protein

docking, prediction and validation of protein-protein interactions, and development of drugs

that disrupt interactions between particular proteins will benefit of partner-specific prediction

methods, that focus on predicting the interaction sites between two or more specific proteins.

Diverse partner-specific methods has been devised in the literature, including a method that

computes the interaction sites from sets of homo-interologs (i.e. complexes containing interact-

ing proteins that are similar to the query proteins) (202), and other that use machine learning

techniques to infer a set of pairs of interaction sites in the partner proteins that are most likely to

interact (36; 195; 2). Similar approaches can be developed for PrISE and extended to PoInterS

using a database of interacting structural elements that can be extracted from ProtInDb.
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5.1.6 Searching for proteins with similar structure

Retrieving proteins with similar structures from the PDB is a computational intensive task

(101) with applications in problems such as protein design, analysis and prediction of protein

functions, prediction of protein structures, and drug discovery. The concept of local structural

similarity devised for PrISE could be used to create a method to efficiently retrieve from the

PDB proteins with similar structure or substructures to that of a query protein. This hypothesis

is supported by the existence of methods that retrieve structural neighbors (38; 23) or similar

substructures (198; 18) based on protein segments, and by the similarity in the performances

of PrISEC with PredUs, based on local structural similarity and protein structural similarity

respectively. Such method could serve (i) to discover a reduced number of proteins with similar

structures to that of a query protein; (ii) as a filter to decrease the number of pairwise structural

alignments required to find proteins with similar structures by excluding proteins with low

similarity; or (iii) to retrieve a set of similar substructures for a query substructure. An efficient

and reliable method to perform search of similar protein structures will produce a significant

impact on the problems mentioned above.
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

This document provides additional information about the process used for building the

PrISE family of predictors of protein-protein interface residues as well as supplementary results

of some of the experiments described in chapter 4. The first two sections describe details about

the histograms of atom nomenclatures and the constraints used to retrieve similar structural

elements from a repository of structural elements. The next section describe the dataset and

the experiments used for tuning the parameters of PrISEG, PrISEL, and PrISEC . The

remaining sections show the results of complementary experiments to the reported in chapter

4 performed on different datasets.

A.1 Atom nomenclatures

A list of the 36 atom nomenclatures used to build the histograms of atom nomenclatures

(HAN) is presented in Table A.1. These nomenclatures were extracted from PDB.

Table A.1 Atom nomenclatures used to build the histograms of atom nomencla-
tures.

C CA CB CD CD1 CD2
CE CE1 CE2 CE3 CG CG1
CG2 CH2 CZ CZ2 CZ3 N
ND1 ND2 NE NE1 NE2 NH1
NH2 NZ O OD1 OD2 OE1
OE2 OG OG1 OH SD SG

A.2 Retrieving similar structural elements - additional details

As explained in the methods section of chapter 4, we defined four constraints that every

structural element retrieved from a repository should comply to be considered similar to a query
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structural element:

“(i) qr and qs must not be from the same protein complex; (ii) the central residues

r and s of the structural elements qr and qs respectively, must be identical; (iii)

the difference between the accessible surface areas of r and s should be ≤ 5%

of the maximum accessible surface area of residues identical to r ; and (iv) the

differences between the accessible surface areas of qr and qs must be ≤ 15%

of the maximum estimated accessible surface area of any structural element

centered on a residue identical to r ”.

Constraint (iii) requires the computation of the difference between the accessible surface

area of the central residues r and s of two structural elements qr and qs respectively. This

difference, denoted by dASAres, is computed as:

dASAres(r, s) =
|asaRes(r)− asaRes(s)|

maxAsaRes(r)−minAsaRes(r)
× 100%

where asares(r1) denotes the accessible surface area of the residue r1, and minAsaRes(r1) and

maxAsaRes(r1) denotes the experimental minimum and maximum accessible surface area of

the residue r1 respectively1. The values of maxAsaRes and minAsaRes were estimated from

a dataset of 400 proteins randomly selected from ProtInDb 2, a database of protein-protein

interface residues. the lower the values of dASAres, the highest the similarity between the

accessible surface areas of the residues r and s.

Constraint (iv) requires the computation of the difference between the accessible surface

areas of two structural elements q1 and q2. This difference, denoted by dASAse, is computed

as:

dASAse(q1, q2) =
|asaSe(q1)− asaSe(q2)|

maxAsaSe(q1)−minAsaSe(q1)
× 100%

where asaSe(q) denotes the summation of the accessible surface area of the surface atoms in the

structural element q. An atom is considered to be a surface atom if its accessible surface area

is > 0 Å2. MinAsaSe(q) and maxAsaSe(q) represent the estimated minimum and maximum
1Note that according to constraint (ii) residue r is identical to residue s.
2http://protindb.cs.iastate.edu

http://protindb.cs.iastate.edu
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accessible surface areas of structural elements centered on a residue identical to the central

residue of q. These two values were estimated from the dataset of 400 proteins extracted from

ProtInDb. The interpretation of dASAse is similar to the interpretation of dASAres (i.e. the

lowest the value of dASAse(q1, q2), the highest the similarity between the accessible surface

areas of the structural elements q1 and q2).

A.3 Tuning method

We tuned the parameters of the PrISE family of predictors in two steps. The goal of the

first step was to efficiently retrieve structural elements from the repository of structural elements

for all the structural elements in a query protein. The goal of the second step was to maximize

the prediction performance. We use the ProtInDb repository of structural elements to perform

these experiments.

A.3.1 Tuning dataset

The tuning dataset is composed of 50 chains (see Table A.2) with more than 40 residues,

resolution ≤ 2.5 Å, and sequence identity ≤ 15%. This dataset has 10,379 residues from which

1,946 are interface residues.

Table A.2 List of the 50 protein chains included in the tuning dataset.
1df4A 1risA 2dkoB 2qeeA 3fedA
1dqzA 1s72H 2dw5A 2vn6A 3h7hB
1dysA 1smxA 2hdiB 2vtbA 3hf5A
1euvA 1t0bA 2iihA 2ww2A 3hm4A
1i2cA 1u5kA 2izzA 2xdpA 3k94A
1j34C 1u9dA 2jkhL 2zewA 3kb4A
1kqfC 1uuyA 2o2vA 3ag3I 3kz5B
1kyfA 1v05A 2o70A 3bm3A 3m9lA
1pytA 1yrkA 2odeA 3ct6A 3mcwA
1q7lB 2cchB 2pmuA 3d32B 3pg6A
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A.3.2 Representative set of similar structural elements

We wanted to efficiently obtain a set of similar structural elements (samples) from the

repository that allows us to perform predictions for all the structural elements in a query

protein. To achieve this goal, we performed a grid search using values equivalent to 5%, 10%

and 15% on the parameters dASAres and dASAse. We found that using dASAres ≤ 5%

and dASAse ≤ 15% we can retrieve samples for all the structural elements in the dataset. The

threshold of 5% on dASAres allows us to obtain samples whose central residues are as similar as

possible to the central residue of a query structural element. The threshold of 15% on dASAse

allows us to include some flexibility to account for conformational changes in residues in the

fringe of the structural elements whereas minimizes the potential problem of lack of samples for

query proteins not included in the tuning dataset.

A.3.3 Performance tuning

We analyzed the impact of different factors in the performance of the PrISE family of

predictors that extracted samples with dASAres ≤ 5%, and dASAse ≤ 15%. We evaluated

several metrics of distance between histogram of atom nomenclatures as well as several schemes

used to assign weights to the samples and to find the number of samples that maximized the

performance of the predictions.

A.3.3.1 Evaluation of distance metrics for histogram of atom nomenclatures

We evaluated six different metrics of distance between histograms selected from a survey

presented in (28): Inner product, fidelity, Euclidean distance, city block distance, symmetric

Kullback–Leibler divergence, and symmetric Kullback–Leibler divergence with Laplace esti-

mates3. We predicted a residue as an interface if the majority of the central residues of the top

50 samples (according to each metric) are interface residues. The results of these experiments,

presented as precision-recall curves in Figure A.1, indicate that predictions using the city block

and the Euclidean metrics outperform predictions using the other metrics. However the per-

3The Laplace estimates add 0.0001 to each bin of the HAN. This allows to perform comparisons between
empty and non-empty bins in the histograms of the query structural element and a sample using Kullback–Leibler
divergence.
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formance achieved using city block distance is slightly better that the same using Euclidean

distance in the central part of the curves. Hence, we selected the city block metric to compute

the distances between histogram of atom nomenclatures (DHAN).

Figure A.1 Prediction results using majority vote on the top 50 samples according
to different definitions of distance between histogram of atom nomen-
clatures.

A.3.3.2 Evaluation of different schemes to assign weights to the samples

We performed several experiments to evaluate different alternatives to assign weights to

the samples and to find an adequate number of samples that maximized the performance of

the prediction in the tuning dataset. These experiments were performed with dASAres ≤ 5%,

dASAse ≤ 15%, and using the city block metric for comparing distances between histograms of

atom nomenclatures.

To set a base case for the comparisons presented in this subsection, we performed predictions

using majority vote on the top n unweighted samples according to the ordering determined by

the values of DHAN. The results of these experiments, shown in Figure A.2, indicate that the

prediction performance is not significantly affected by the number of unweighted samples.
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Figure A.2 Prediction results using majority vote with different number of un-
weighted samples.

A second experiment was performed using majority vote on samples weighted using the

normalized DHAN as:

w(s, q) = 1−
DHAN(s, q)

maxr∈S(Q),q1∈Sr ,{DHAN(q1, r)}

where s is a sample associated with the query structural element q, S(Q) represents the set of

all the structural elements of a query protein Q, and Sr represents the set of all the samples

associated with a query structural element r. The normalization term corresponds to the largest

DHAN between any structural element in a query protein and its associated samples. Hence,

samples with lower DHAN values are assigned larger weights. The results of this experiment,

presented in Figure A.3, indicate that the best performance was achieved using the top 20 to

30 samples. A comparison between these results and the results presented in Figure A.2 shows

that the best performance was achieved when the samples were weighted using DHAN.

The following experiments evaluated the weighting schemes proposed for each member of

the PrISE family of predictors. For PrISEG, the weight of each sample extracted from

protein p (described by equation (4.1) in the methods section in chapter 4) is computed as

the total number of samples extracted from p. Hence, samples extracted from proteins with

higher general structural similarity to the query protein (according to the number of samples)
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Figure A.3 Prediction results with different number of samples and using majority
vote on samples weighted using the city block distance between his-
togram of atom nomenclatures.

are assigned larger weights. For PriSEL (see equation (4.2) in chapter 4), the weight of a

sample extracted from protein p is computed as the number of samples extracted from p that

are associated with the structural elements in a region surrounding the query structural element

(i.e. local similarity). The PrISEC predictor (equation (4,3) in chapter 4), weights each sample

using information derived from the combination of local and general similarity.

The results of an evaluation of PrISEG using different number of samples are presented

in Figure A.4. These results indicate that the best prediction was achieved using 100 to 200

samples.

On the other hand, the best results using PrISEL are achieved using as few as 50 samples,

as presented in Figure A.5.

The results of experiments using PrISEC presented in Figure A.6 show that the prediction

performances were similar when more than 300 samples were used. We decided to use 500

samples, which produced slightly better precision than the other alternatives for recall values

between 0.6 and 0.75.
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Figure A.4 Prediction results using different number of samples and general con-
tribution (i.e. PrISEG).

A comparison of the best results derived from all the previous experiments, as well as the

curve computed from a randomized prediction, are shown in Figure A.7. The randomized

prediction was achieved by randomly shuffling the interface/non-interface labels of the samples

in the repository of structural elements, and performing prediction using samples weighted

by combined contribution. From the figure it is possible to deduce that (i) all the prediction

schemes are superior than random predictions, (ii) predictions generated using weighted samples

are better than predictions produced using unweighted samples, (iii) schemes that incorporate

general contribution produces better results than prediction based only in local contribution,

and (iv) the best performance is achieved using the contribution scheme that combines local

and general information.

As a result, the experiments described in chapter 4 were performed using the top samples

based on the city block metric for DHAN, differences ≤ 5% between the accessible surface areas

of the central residues of the samples and the query structural elements, and differences ≤ 15%

between the accessible surface areas of the samples and each query structural element. The
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Figure A.5 Prediction results using set of samples of different size and local contri-
bution (i.e. PrISEL).

number of samples used by PrISEG, PrISEL, and PrISEC were set to 200, 50, and 500

respectively.

A.4 Selection of a threshold value for performing classification

The PrISE family of predictors produce a probability that indicates the likelihood of each

residue on the surface of the protein of being an interface residue. The selection of a threshold

value on this probability allows to label each residue as interface / non-interface. The lower the

threshold value, the more residues are labeled as interfaces. We used the results of the PrISEC

predictor presented in Figure A.7 to select a threshold value of 0.34, which produced predictions

with similar precision and recall values. This value was used as default for all the predictors of

the PrISE family throughout the experiments presented in chapter 4.

A.5 Additional comparisons of PrISEL, PrISEG and PrISEC

The performances of PrISEL, PrISEG and PrISEC on the DS24Carl, DS56bound and

DS56unbound datasets are shown in Figures A.8 to A.10. Samples extracted from homologs of

the same species than the query proteins were filtered out from the repository of structural ele-

ments. In terms of performance, the precision recall curves indicate that random < PrISEL <

PrISEG ≤ PrISEC .
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Figure A.6 Prediction results using number of samples and combined contribution
(i.e. PrISEC).

Figure A.7 Prediction results using different weighting schemes. The number in
the labels indicates the number of samples used for prediction.

An example of the relationship between the scores of PrISEL, PrISEG and PrISEC , and

the actual interface/non-interface labels for some residues in the protein 1ohz-B is illustrated

in Figure A.11. From this figure is clear that PrISEC is successful correcting some erroneous

predictions generated by both PrISEL and PrISEG (e.g. residues 19, 25, and 26) or by only
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Figure A.8 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS24Carl.

Figure A.9 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS56Bound.

one of them (e.g. amino acids 2, 18, and 24). PrISEC sometimes generates wrong predictions

in cases where PrISELor PrISEG make correct predictions (e.g. residues 6, 11, 14, and 20).

However, our experimental results indicate that the number of errors fixed by PrISEC exceeds

the number of errors it introduces.
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Figure A.10 Comparison of PrISEL, PrISEG, and PrISEC using the dataset
DS56Unbound.

A.6 Additional evaluation of the impact of homologs of the query protein

in the predictions

The impact caused on the predictions by filtering out from the repository samples derived

from sequence homologs of the query proteins is presented in Figures A.12 to A.14. This

evaluation was performed using PrISEC on the DS24Carl, DS56Bound and DS56Unbound

datasets. These figures show that the prediction performances are lower when samples extracted

from homologs of the query proteins are filtered out from the repository of structural elements.

A.7 Additional comparison with two prediction methods based on

geometrical conserved local surfaces

A comparison of the predictors of the PrISE family with the methods presented in (26; 27)

using the DS24Carl dataset and excluding from the repository of structural elements samples

extracted from homologs (without regarding the species) is presented in Table A.3. According to
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Figure A.11 Example of the scores generated by PrISEL,P rISEG, and PrISEC . This
figure show (in the vertical axis) the score generated by PrISEL,P rISEG, and
PrISEC as well as the actual interface residues for the first 28 residues (shown in
the horizontal axis) in the sequence of the protein chain 1ohz-B. The horizontal red
line signals the threshold computed on the scores (0.34) to differentiate between
interfaces and non-interfaces.
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Figure A.12 Performance of PrISEC with DS24Carl using three schemes for exclud-
ing similar proteins.

Figure A.13 Performance of PrISEC with DS56Bound using different schemes for
excluding similar proteins.

this table, all the members of the PrISE family outperform the classifiers presented in (26; 27)

in terms of precision, recall, and F1.

We also evaluated the performance of the PrISE family of predictors using the ProtInDb

and the ProtInDb
⋂

PQS repositories of structural elements. The results of these compar-

isons, shown in Tables A.4 and A.5, indicate that predictors that use samples extracted from the

ProtInDb repository slightly outperform predictors that extract samples from the ProtInDb
⋂

PQS

repository.
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Figure A.14 Performance of PrISEC with DS56Unbound using several schemes for
excluding similar proteins.

Table A.3 Performance of different methods on the DS24Carl dataset. Performance
measures are computed as the average on the set of 24 proteins. Precision and recall
values for Carl08 and Carl10 were taken from (26) and (27) respectively. Samples
derived from homologs of the query proteins were excluded from the ProtInDb
repository.

Predictor Precision % Recall % F1 % Accuracy % CC % AUC %
Carl08 31.5 35.3 33.3 - - -
Carl10 32.0 34.0 33.0 - - -
PrISEL 41.1 52.3 44.1 66.3 21.1 66.7
PrISEG 45.6 48.6 45.4 69.9 24.0 68.8
PrISEC 48.7 46.4 45.8 72.2 26.3 69.2

A.8 Abbreviations

dASAres - Difference between the accessible surface area of the central residues and of two

structural elements.

dASAse - Difference between the accessible surface area of two structural elements.

DHAN - distance between two histograms of atom nomenclatures.

Sample - a structural element retrieved from a repository of structural elements.
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Table A.4 Performance of PrISE predictors using different repositories of struc-
tural elements and excluding homologs. Performance measures are computed
as the average on the set of 24 proteins in the DS24Carl dataset. Samples extracted
from homologs (without regarding the species) were excluded from the prediction
process. The column “ProtInDb” indicates whether samples were extracted from
the ProtInDb repository (marked with a tick), or from the ProtInDb

⋂

PQS repos-
itory.

Predictor ProtInDb Precision % Recall % F1 % Accuracy % CC % AUC %
PrISEL X 41.1 52.3 44.1 66.3 21.1 66.7

41.0 50.7 43.3 66.6 19.2 66.6
PrISEG X 45.6 48.6 45.4 69.9 24.0 68.8

43.4 47.7 43.8 69.3 21.2 67.3
PrISEC X 48.7 46.4 45.8 72.2 26.3 69.2

45.5 47.7 45.0 70.4 23.4 69.5

Table A.5 Performance of PrISE methods using different repositories and excluding
homologs of the same species. The performance measures were computed as the
averages on the proteins in the DS24Carl dataset. Samples extracted from homologs
from the same species than the query proteins were filtered out from the prediction
process. The “ProtInDb” column indicates whether the samples were extracted
from the ProtInDb repository (marked with a tick), or from the ProtInDb

⋂

PQS

repository.
Predictor ProtinDb Precision % Recall % F1 % Accuracy % CC % AUC %
PrISEL X 45.1 56.2 50.0 69.1 27.1 70.5

46.3 55.7 48.6 69.9 26.8 71.0
PrISEG X 53.9 58.7 56.2 75.1 36.8 75.6

51.6 56.7 52.5 74.0 33.1 74.3
PrISEC X 58.3 58.3 58.3 77.5 40.6 77.1

54.4 58.4 54.8 75.5 36.6 76.2
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